Library of Organic Chemistry Active Learning Resources LOCAL

Chapter 7 Alkyl Halides - Part 4 (E1 Elimination Reactions & Overview)

Which of the following is the FASTER reaction? Explain briefly.

I
$$\longrightarrow$$
 Br $\xrightarrow{H_2O}$

$$II \xrightarrow{\mathsf{Br}} \xrightarrow{\mathsf{H}_2\mathsf{O}} \bigwedge$$

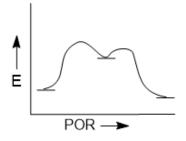
A) I is faster because this is more stable:

B) II is faster because this is more stable:

C) I is faster because this is less stable:

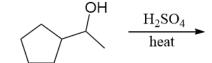
D) I is faster because LG has less sterics

substitution


E) neither reaction is faster because the products are the same

E1 Mechanism

E1 Kinetics Rate = k[RBr]


- follows Zaitsev / Hofmann rule: forms most substituted, most stable alkene
- a more stable carbocation will be formed faster (lower Ea) and gives slower / faster E1/S_N1

Rate (by RX type)

Which of the following is the LEAST likely to be isolated as a product in the reaction shown?

B)

D)

3

4

Which would undergo the SLOWEST E1 mechanism?

A)

B)

C

D)

5

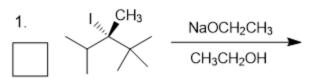
Predict the major product.

Substitution vs. Elimination (7.9)

Summarize what you know about each of the following mechanisms. (circle all that apply)

	S _N 2	S _N 1	E2	E1
bi/unimolecular?	bi / uni	bi / uni	bi / uni	bi / uni
one-step mech.?	yes / no	yes / no	yes / no	yes / no
need good LG?	yes / no	yes / no	yes / no	yes / no
need strong Nu:?	yes / no	yes / no	yes / no	yes / no
need strong base?	yes / no	yes / no	yes / no	yes / no
sterics important?	yes / no	yes / no	yes / no	yes / no
preferred LG type?	1º 2º 3º allylic	1° 2° 3° allylic	1° 2° 3° allylic	1º 2º 3º allylic
stereochemistry?				

stereochemistry?


other notes

Categorize the following species as a strong or weak nucleophile, AND as a strong or weak base.

NaOH	NH_3	MeOH	NaCN	iPrOH	NaOEt	NaNH ₂	PhNH ₂	0
ı⊖	tBuOK	NaSH	Ph ₃ P	H ₂ O	CH₃O [⊝]	${\sf PhS}^{igoriangle}$	CH₃CH₂OH	CH₃ LO⊖
strong Nu	I:				strong base			
weak Nu	-				weak base			

Competing Substitution and Elimination Mechanisms

For each reaction, determine the mechanism and predict the major product(s). N.R. if no reaction.

3 Provide reagents needed to achieve each transformation.

OH →

- A) 1) TsCl, pyridine2) H₂SO₄, heat
- B) EtONa, EtOH
- C) 1) HBr 2) t-BuOK
- D) H₂SO₄, heat
- E) HBr, heat

- A) EtONa, EtOH
- B) H₂SO₄, heat
- C) 1) TsCl, pyridine 2) t-BuOK
- D) 1) TsCl, pyridine2) NaOH, H₂O
- E) t-BuOK, t-BuOH

5 Predict the major product.

E) No Reaction