Library of Organic Chemistry Active Learning Resources LOCAL

Chapter 5 Stereochemistry - Part 1

Which of the following pairs are examples of **conformers**?

II
$$CH_3$$
 and CH_3 CH_3

3 Group Work: categorize each pair of compounds (circle one: isomers, stereoisomers or neither).

$$\longrightarrow$$
 and \longrightarrow Br and \longrightarrow Br

isomers stereoisomers neither

3 Determine whether each of the given compounds is chiral or achiral.

All chiral objects have non-superimposable mirror images. (e.g., a student desk)

***Every chiral molecule has an

All **achiral** objects are exactly the same as their mirror images. (e.g., a chair without arms)

An achiral molecule does / does not have an enantiomer.

Determine whether each molecule is *chiral* or *achiral*, and determine whether or not it has an enantiomer. Consider redrawing chairs as hexagons.

CI

Chiral? _____

Chiral? _____

Chiral? _____

Has an _____ enantiomer? Has an _____ enantiomer? Has an _____ enantiomer?

Use drawings to explain why the following compound is chiral. (hint: draw a 3D sketch and look for planes of symmetry) (Klein 5.9)

$$CH_3$$
— C = C = C — CH_3

7

Group activity: which substituent would have the higher priority?

8

$$CI \longrightarrow \{ vs. t-Bu \longrightarrow \{ \} \}$$

9 Provide a drawing for the following name: (3S, 4R)-1,3,4-trichloro-2-(chloromethyl)heptane

3

Which of the following pairs are examples of conformers?

A) I only

E) I, II and III

Determine whether each of the given compounds is chiral or achiral.

ОН	CI	OH CH3
A) chiral	achiral	chiral
B) chiral	chiral	achiral
C) achiral	achiral	chiral
D) achiral	chiral	achiral
E) achiral	achiral	achiral
	I	I

- A) It is chiral and it does have an enantiomer.
- B) It is NOT chiral but it does have an enantiomer.
- C) It is chiral but it does NOT have an enantiomer.
- D) It is NOT chiral and it does NOT have an enantiomer.

II. R/S Nomenclature of Chiral Centers (5.3, Cahn-Ingold-Prelog Rules)

5-2

The stereochemistry of each chirality center (tetrahedral carbon with four different groups attached) is designated as either R or S configuration.

- 1. Assign priorities to the four groups: #1 has highest atomic number, #4 has lowest atomic number
- if there is a tie, move away one atom at a time until you find a difference
- a double bond can be treated as two single bonds
- 2. With the lowest priority group (#4) pointing away from you, move from #1 \rightarrow #2 \rightarrow #3
- if rotation is clockwise, then (R) (Latin rectus/right-handed) if rotation is counterclockwise, then (S) (Latin sinister/left)
- Which is the correct IUPAC name for the given compound?

- A) (S)-1-chloro-1-methylpropane
- B) (R)-1-chloro-1-methylpropane
- C) (S)-2-chlorobutane
- D) (R)-2-chlorobutane

Which is the correct IUPAC name for the given compound?

- A) 3-ethyl-2,2,4-trimethylpentane A) (S)
- B) 3-ethyl-2,4,4-trimethylpentane B) (R)
- C) 2-methyl-3-(trimethylmethyl)pentane C) neither
- D) 2-methyl-3-(1,1-dimethylethyl)pentane
- 8 For each pair, which substituent would have the higher priority?

$$CI \rightarrow Vs. t-Bu \rightarrow \xi$$

- A) higher priority groups are: $CI \longrightarrow \xi$ and
- B) higher priority groups are: t-Bu \rightarrow and
- C) higher priority groups are: $C \mid -\xi$ and $\xi =$
- D) higher priority groups are: $t-Bu = \xi$ and $\xi = \xi$

Provide a drawing for the following name: (3*S*,4*R*)-1,3,4-trichloro-2-(chloromethyl)heptane