Library of Organic Chemistry Active Learning Resources LOCAL

Chapter 3 Acid-Base Reactions (Proton Transfer) - Part 1

Group work: protonate each compound with the given acid (add missing lone pairs, draw curved arrows to show mechanism, draw the products and label them C.A. and C.B.).

Group work: deprotonate each compound with the given base (add missing lone pairs, draw curved arrows to show mechanism, draw the products and label them C.A. and C.B.).

3 Draw the conjugate acid or conjugate base, as directed, for each.

conjugate base of	conjugate acid of	conjugate acid of
NH_3	H ₂ O	H: [⊖]

Group work: Predict the products, use curved arrows to show the mechanism for the proton transfer reaction, determine the favored direction of equilibrium, and explain your choice.

5 Which is the stronger acid? Explain briefly.

What is the most acidic proton in methanol, CH₃OH (H_a or H_b)? Explain briefly.

$$H_2O$$
 H_2S

Acid Dissociation Constant, K_a , and p K_a are measures of acid strength (3.3)

(from lecture notes page 3-7

→ A[⊕] + H₃O[⊕]

if HA is a STRONG acid

if HA is a WEAK acid

since K_a is often VERY large or VERY small, it's easier to work with p K_a

$$K_a = \frac{[H_3O^+][A^-]}{[HA]}$$

Ka is the acid

dissociation constant

$$pK_a = -\log(K_a)$$

 $K_{\rm eq}$ is the equilibrium constant

$$K_{eq} = \frac{[products]}{[reactants]}$$

if K_a is a LARGE number (>1), then the acid is stronger weaker if an acid is stronger, then the p K_a is higher lower

for example, sulfuric acid (H_2SO_4) has a K_a of ~1.6 x 10^5 and a pK $_a$ of -5.2 acetic acid (CH_3CO_2H) has a K_a of 1.8 x 10^{-5} and a p K_a of 4.75

7

What predictions can you make about the relative K_a and pK_a values of the two acids shown below? Justify your answers.

Klein Table 3.1 pKa Values of Various Acids

TABLE 3.1 $\mathbf{p} K_{\mathbf{a}}$ VALUES OF COMMON COMPOUNDS AND THEIR CONJUGATE BASES CONJUGATE BASE Weakest Strongest acid base -7.3cl[⊖] -7CI-H -1.744.75 9.0 9.9 15.7 (see margin note) 16.0 18.0 19.2 H-C≡C-H 38 44 Weakest Strongest acid base 50

3 Draw the conjugate acid or conjugate base, as directed, for each.

con	jugate base of NH ₃	conjugate acid of H ₂ O	conjugate acid of H:⊖
A)	NH₂ [⊝]	H₃O [⊕]	H ₂ O
B)	NH_4^{\oplus}	он⊝	H ₂ O
C)	NH₂ [⊝]	он⊝	H ₂
D)	NH₂ [⊝]	H₃O [⊕]	H ₂
E)	NH_4^{\oplus}	он⊝	H ₂

Predict the products and determine the direction of the equilibrium (forward or reverse favored?). Explain briefly.

$$\Theta$$
O-CH₃ + H N-CH₂CH₃ \Longrightarrow acid

- A) **Reverse** reaction is favored. (-) charge on electronegative oxygen is more stable, making CH₃O⁻ a **weaker base** than CH₃CH₂NH⁻.
- B) **Reverse** reaction is favored. (-) charge on electronegative oxygen is more stable, making CH₃O⁻ a **stronger base** than CH₃CH₂NH⁻.
- C) **Forward** reaction is favored. (-) charge on electronegative oxygen is more stable, making CH₃O⁻ a **weaker base** than CH₃CH₂NH⁻.
- D) **Forward** reaction is favored. (-) charge on electronegative oxygen is more stable, making CH₃O⁻ a **stronger base** than CH₃CH₂NH⁻.

Which is the stronger acid? Explain briefly.

$$H_2O$$
 H_2S

6

- A) H₂O is the stronger acid because HO is **more** stable than HS.
- B) H₂O is the stronger acid because HO is less stable than HS.
- C) H₂S is the stronger acid because HS⁻ is **more** stable than HO⁻.
- D) H₂S is the stronger acid because HS is **less** stable than HO.
- E) It's impossible to predict acid strength without pK_a data.

What is the most acidic proton in methanol, CH_3OH (H_a or H_b)? Explain briefly (CB = Conjugate Base).

- A) $\mathbf{H_b}$ is more acidic. Because carbon is less electronegative, CB-b is more stable than CB-a.
- B) H_b is more acidic. Because carbon is less electronegative, H_a is more stable than H_b .
- C) H_a is more acidic. Because oxygen is more electronegative, CB-a is more stable than CB-b.
- D) H_a is more acidic. Because oxygen is more electronegative, H_a is more stable than H_b .
- E) H_a is more acidic. Because oxygen is more electronegative, H_b is more stable than H_a .

What predictions can you make about the relative K_a and pK_a values of the two acids shown below? Justify your answers.

- A) **X** has the larger K_a and the larger $pK_{a.}$
- B) X has the larger K_a and the smaller $pK_{a.}$
- C) **Y** has the larger K_a and the larger pK_{a} .
- D) Y has the larger K_a and the smaller $pK_{a.}$