Organic Chemistry I, CHM 3140 Dr. Laurie S. Starkey, Cal Poly Pomona # For clicker question voting, go to: https://pollev.com/lauriestarke263 or text LAURIESTARKE263 to 37607 ### Chapter 3 Acid-Base Reactions (Proton Transfer), Part 1 – Practice Problems Group work: protonate each compound with the given acid (add missing lone pairs, draw curved arrows to show mechanism, draw the products and label them C.A. and C.B.). Group work: deprotonate each compound with the given base (add missing lone pairs, draw curved arrows to show mechanism, draw the products and label them C.A. and C.B.). 3 Draw the conjugate acid or conjugate base, as directed, for each. | conjugate base of | conjugate acid of | conjugate acid of | |-------------------|-------------------|-------------------| | NH ₃ | H ₂ O | H: [⊖] | Group work: Predict the products, use curved arrows to show the mechanism for the proton transfer reaction, determine the favored direction of equilibrium, and explain your choice. **5** Which is the stronger acid? Explain briefly. What is the most acidic proton in methanol, CH₃OH (H_a or H_b)? Explain briefly. $$H_2O$$ H_2S #### Acid Dissociation Constant, K_a , and p K_a are measures of acid strength (3.3) (from lecture notes page 3-7 → A[⊕] + H₃O[⊕] if HA is a STRONG acid if HA is a WEAK acid since K_a is often VERY large or VERY small, it's easier to work with p K_a $$K_a = \frac{[H_3O^+][A^-]}{[HA]}$$ Ka is the acid dissociation constant $$pK_a = -\log(K_a)$$ $K_{\rm eq}$ is the equilibrium constant $$K_{eq} = \frac{[products]}{[reactants]}$$ if K_a is a LARGE number (>1), then the acid is stronger weaker if an acid is stronger, then the p K_a is higher lower for example, sulfuric acid (H_2SO_4) has a K_a of ~1.6 x 10^5 and a pK $_a$ of -5.2 acetic acid (CH_3CO_2H) has a K_a of 1.8 x 10^{-5} and a p K_a of 4.75 7 What predictions can you make about the relative K_a and pK_a values of the two acids shown below? Justify your answers. ## Klein Table 3.1 pKa Values of Various Acids ## TABLE 3.1 $\mathbf{p} K_{\mathbf{a}}$ VALUES OF COMMON COMPOUNDS AND THEIR CONJUGATE BASES CONJUGATE BASE Weakest Strongest acid base -7.3cl[⊖] -7CI-H -1.744.75 9.0 9.9 15.7 (see margin note) 16.0 18.0 19.2 H-C≡C-H 38 44 Weakest Strongest acid base 50 | con | jugate base of
NH ₃ | conjugate acid of H ₂ O | conjugate acid of
H: [⊖] | |-----|-----------------------------------|------------------------------------|--------------------------------------| | A) | NH₂ [⊝] | H₃O [⊕] | H ₂ O | | B) | $\mathrm{NH_4}^{\oplus}$ | он⊝ | H ₂ O | | C) | NH₂ [⊝] | он⊝ | H ₂ | | D) | NH₂ [⊝] | H₃O [⊕] | H ₂ | | E) | $NH_4^{ \oplus}$ | он⊝ | H ₂ | 4 Use the given pK_a values to determine the direction of the equilibrium (forward or reverse favored?). Explain briefly. $$^{\odot}$$ O-CH₃ + H N-CH₂CH₃ \longrightarrow HO-CH₃ + $^{\odot}$ N-CH₂CH₃ pK_a ~16 - A) **Reverse** reaction is favored, because H₂NCH₂CH₃ is the stronger acid. - B) Reverse reaction is favored, because H2NCH2CH3 is the weaker acid. - C) **Forward** reaction is favored, because H₂NCH₂CH₃ is the stronger acid. - D) Forward reaction is favored, because H₂NCH₂CH₃ is the weaker acid. Which is the stronger acid? Explain briefly. $$H_2O$$ H_2S 6 - A) H₂O is the stronger acid because HO is **more** stable than HS. - B) H₂O is the stronger acid because HO is less stable than HS. - C) H₂S is the stronger acid because HS⁻ is **more** stable than HO⁻. - D) H₂S is the stronger acid because HS is **less** stable than HO. - E) It's impossible to predict acid strength without pK_a data. What is the most acidic proton in methanol, CH_3OH (H_a or H_b)? Explain briefly (CB = Conjugate Base). - A) $\mathbf{H_b}$ is more acidic. Because carbon is less electronegative, CB-b is more stable than CB-a. - B) H_b is more acidic. Because carbon is less electronegative, H_a is more stable than H_b . - C) H_a is more acidic. Because oxygen is more electronegative, CB-a is more stable than CB-b. - D) H_a is more acidic. Because oxygen is more electronegative, H_a is more stable than H_b . - E) H_a is more acidic. Because oxygen is more electronegative, H_b is more stable than H_a . What predictions can you make about the relative K_a and pK_a values of the two acids shown below? Justify your answers. - A) **X** has the larger K_a and the larger $pK_{a.}$ - B) X has the larger K_a and the smaller $pK_{a.}$ - C) **Y** has the larger K_a and the larger pK_{a} . - D) Y has the larger K_a and the smaller $pK_{a.}$