Library of Organic Chemistry Active Learning Resources LOCAL

Chapter 10 Radical Reactions

Predict the major product for the following reaction.

$$CH_3CH_3 \xrightarrow{Br_2}$$

Provide a mechanism for the monobromination of ethane.

Begin with an initiation step, and then use propagation steps until the product is formed.

Consider: why does the bromine radical abstract a H atom not a CH₃ group?

Estimate ΔH for competing propagation steps... <u>bond broken</u> <u>bond formed</u>

$$Br \cdot + H - CH_2CH_3 \longrightarrow Br - H + \cdot CH_2CH_3$$

$$Br \cdot + H_3C - CH_3 \longrightarrow Br - CH_3 + \cdot CH_3$$

BDE (kcal/mol)	C-H 98	H-Br 88	C-C 90	C-Br 68
----------------	--------	---------	--------	---------

Therefore, free-radical halogenation always replaces a H atom with a CI or Br atom

In the compound shown, which hydrogen is most easily abstracted in a free radical bromination reaction?

$$CH_3$$
 CH_3 — CH — CH — CH — CH_3
 CH_3

3 Predict the major product(s) for each reaction. Consider both regiochemistry and stereochemistry.

$$\frac{\operatorname{Br}_2}{\operatorname{hv}}$$

** Bromination occurs at most substituted carbon, chlorination forms all possible products **

Consider: why is bromination more selective than chlorination? See ΔH for the H atom abstraction step for both...

... bond broken bond formed

$$Br + H - CH_2CH_3 \longrightarrow H - Br + \cdot CH_2CH_3$$

$$CI \cdot + H - CH_2CH_3 \longrightarrow H - CI + \cdot CH_2CH_3$$

BDE (kcal/mol) C_H 98 H_Br 88 H_Cl 103 *H-F 135 H-I 71*

Predict the TWO products expected:

4

5

Predict the major products for the following reactions.

6

Transform the given starting material to desired TM.

$$\stackrel{\downarrow}{\bigcirc} \longrightarrow \stackrel{\downarrow}{\bigcirc}$$

^{**}The first propagation step for bromination is endothermic so it is slow and the transition states leading to the different intermediates (1°/2°/3°) are significantly different (primary is over 1600 times slower than tertiary).

^{**}For chlorination, this step is exothermic so it is fast and does not discriminate about which hydrogen is abstracted. The transition states for chlorination at 1°/2°/3° sites are not significantly different, so the reaction rates are similar (primary is one-fourth the rate of tertiary).

^{**}Thermodynamic considerations (strengths of bonds formed and bonds broken) also explain why **reactions with F₂ and I₂ are not useful**. Fluorination releases too much energy (explosive) and iodination forms very weak bonds so it is too endothermic and unfavorable.

CH₃CH₃
$$\xrightarrow{\text{Br}_2}$$

D) No Reaction

Which of the following is a likely intermediate in the mechanism for the reaction below?

$$CH_3CH_3 \xrightarrow{Br_2} CH_3CH_2Br$$

B)
$$H \cdot \\ Br$$

C) CH_3CH_2

E) H_2C
 CH_2

1b

The following reaction gives a mixture of products. Describe the mixture.

$$\frac{\operatorname{Cl}_2}{\operatorname{hv}}$$

3

- A) Three constitutional isomers (all are chiral).
- B) Four constitutional isomers (three are chiral).
- C) Four constitutional isomers (two are chiral).
- D) Five constitutional isomers (three are chiral).
- E) Five constitutional isomers (two are chiral).

Which of the following is one of the two expected products for the given reaction?

Predict the major products for the following reactions.

5a

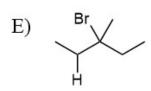
→ HBr

5b

Predict the major product and briefly explain.

because is more stable

B) Br


because is more stable

C) H

because Br is more stable

D) H

because is more stable

because Dr. Markovnikov told me so

Which reagents would be best to achieve the following synthesis?

- A) 1) NBS, hν
 - 2) NaOEt

- C) 1) NBS, hv
 - 2) t-BuOK

- B) 1) Br₂, hν
 - 2) NaOEt

- D) 1) Br₂, hν
 - 2) t-BuOK