6A) (8 pts) **Predict the major product** for the following <u>E2 elimination reaction</u> and **provide a complete mechanism**. Pay close attention to details, including lone pairs, formal charges and the use of curved arrows. Show how you determined the major product. **No work = no credit.**

6B) (8 pts) Provide a structure that is consistent with the given 1H NMR spectrum. The ^{13}C NMR spectrum of the compound exhibits a signal at 170 ppm (the other four signals are below 70 ppm). Show your work and justify your answer by labeling each set of protons on the structure a/b/c to match the a/b/c peaks in the spectrum, and use the table to confirm the δ value for each set of protons. No work = no credit.

rk – no crean.	
¹ H NMR	
Protons on Carbon	
Type of C-H	δ (ppm)
R-CH ₃	0.9
R-CH ₂ -R	1.3
R ₃ C-H	1.5-2
O CH ₃	1.8
O R-C-CH ₃	2-2.3
$Ar-CH_3$	2.3
RC≡C-H	2.5
R_2N-CH_3	2-3
$R-CH_2-X$	3-3.5
$RO-CH_3$	3.8
R-CH ₂ -F	4.5
H R ₂ C=CR	5-5.3
Ar—H	7.3
0 R-C-H	9.7
Protons on Oxygen	
Type of H	δ (ppm)
ROH	0.5-5
ArOH	4-7
O R-C-OH	10-13