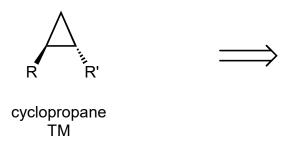

# Cal Poly Pomona, Dr. Laurie S. Starkey, Organic Synthesis CHM 4220 Chapter 6 Cyclic Target Molecules


6-1

# 6.1 Synthesis of Cyclopropane Rings



#### Methods for preparing singlet carbenes

## Retrosynthesis of a cyclopropane TM



# 6.2 Synthesis of Cyclobutane Rings

$$\frac{h\nu}{\text{(light)}}$$
 major

#### Retrosynthesis of cyclobutane rings

Ph 
$$CH_3$$
 [2+2]

## 6.3 Synthesis of Cyclopentane Rings via Radical Cyclization

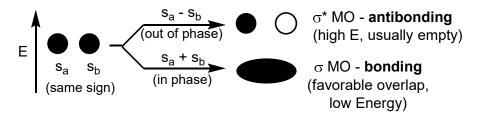
\*\*cyclization reactions to form 5- or 6-membered rings are favorable because of low ring strain\*\*

#### AIBN to initiate radical reactions

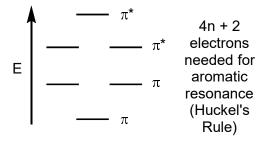
# Retrosynthesis of methylcyclopentane rings

# Tandem cyclizations to give fused 5-membered rings

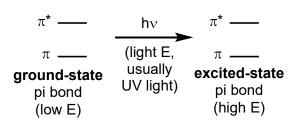
#### The Diels-Alder Reaction


Danishefsky's Diene is a useful synthetic reagent (see problems 6-3 and 6-8)

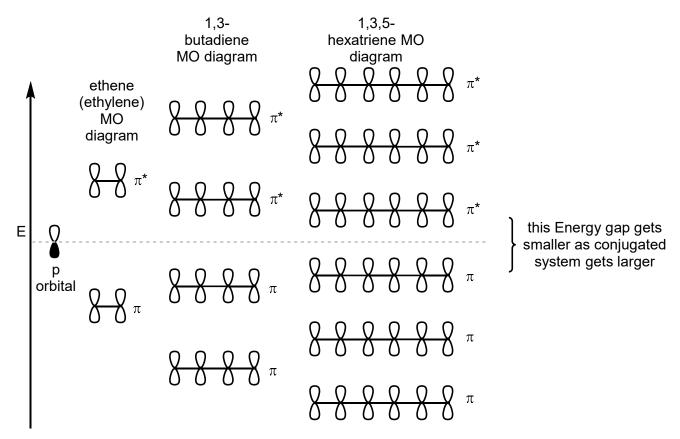
TMSO The table of Diels-Alder 
$$O$$
 The table of Diels-Alder  $O$  The table of Diels  $O$  The


# **Retrosynthesis of cyclohexane TMs**

# Molecular Orbital (MO) Theory to Explain Pericyclic Reactions


#### Molecular Orbital theory of bonding




#### **MO** theory of aromaticity

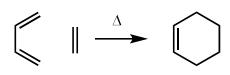


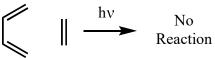
#### **MO theory of Ultraviolet/Visible Spectroscopy**



#### Molecular Orbital theory of conjugated systems (UV-Vis Spectroscopy) (Klein 16.11)

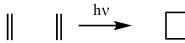



if...increase in # of conjugated pi bonds then...increase in resonance stabilization and...decrease in E needed for  $\pi \longrightarrow \pi^*$ 


lower Energy visible light is absorbed so these compounds are COLORED!

# MO theory of pericyclic reactions (the Woodward-Hoffmann rules) (Klein 16.8) $^{6\text{-}6}$

#### Heat-promoted pericyclic reactions


#### Light-promoted pericyclic reactions





4+2 cycloadditions are thermally/photochemically allowed

Reaction



2+2 cycloadditions are thermally/photochemically allowed



Ethene LUMO  $(\pi^*)$ 



orbital symmetry is conserved

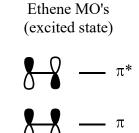
thermal [4+2]cycloaddition is allowed

Ethene LUMO  $(\pi^*)$ 

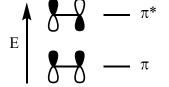


orbital symmetry is NOT conserved

thermal [2+2] cycloaddition is forbidden




Ethene

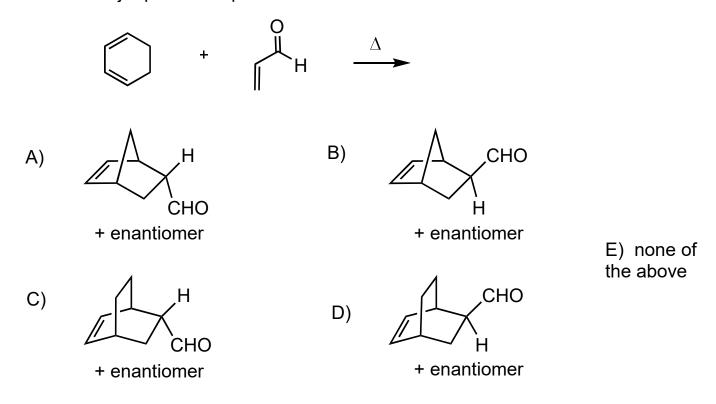

HOMO  $(\pi)$ 



Ethene MO's (ground state)



HOMO of excited state




LUMO of groundstate



photochemical [2+2] cycloaddition is symmetry-allowed

Predict the major product expected.



Predict the major product expected.