
"Always do what you are afraid to do."

Ralph Waldo Emerson

Dr. Laurie S. Starkey Cal Poly Pomona For clicker question voting, go to: <a href="https://pollev.com/lauriestarke263">https://pollev.com/lauriestarke263</a>





CHM 3150 Organic Chemistry II 10/28/25

# Today's Topic: Ch. 21 Conjugate Additions

## **Ch. 21 Part 3**

- ✓ Watch
- ✓ Read
- ✓ Practice

### Daily To-Do

# Flipped Lectures

### Step 3


- Read Klein 21.6 Conjugate Addition Reactions
- Work through Conceptual Checkpoints 21.30, 21.31 21.34, 21.35

Fnols & Fnolates Part 3

31 minutes

skeleton not pages 21-10 through 21-13

# Flipped Lecture



| Enols and Enolates, Part 2 ▼                              |                      | ≣+ - 5 |
|-----------------------------------------------------------|----------------------|--------|
| Intro                                                     |                      | 0:00   |
| Conjugate Additions                                       |                      | 0:06   |
| α, β-unsaturated Carbonyls                                |                      | 0:07   |
| Conjugate Additions                                       |                      | 1:50   |
| '1,2-addition'                                            |                      | 1:51   |
| '1,-4-addition' or 'Conjugate Addition'                   |                      | 2:24   |
| Conjugate Additions                                       |                      | 4:53   |
| Why can a Nu: Add to this Alkene?                         |                      | 4:54   |
| Typical Alkene                                            |                      | 5:09   |
| α, β-unsaturated Alkene                                   | Conjugate Additions: | 5:39   |
| Electrophilic Alkenes: Michael Acceptors                  | Conjugate Additions: | 6:35   |
| Other 'Electrophilic' Alkenes (Called 'Michael Acceptors) | Cuprates,            | 6:36   |
| 1,4-Addition of Cuprates (R2CuLi)                         | Michael Reaction,    | 8:29   |
| 1,4-Addition of Cuprates (R2CuLi)                         | Robinson             | 8:30   |
| 1,4-Addition of Cuprates (R2CuLi)                         |                      | 11:23  |
| Use Cuprates in Synthesis                                 |                      | 11:24  |
| Preparation of Cuprates                                   |                      | 12:25  |
| Prepare Organocuprate From Organolithium                  |                      | 12:26  |
| Cuprates Also Do SN2 with RX E+ (Not True for RMgX, RLi)  |                      | 13:06  |
| 1,4-Addition of Enolates: Michael Reaction                |                      | 13:50  |
| 1,4-Addition of Enolates: Michael Reaction                |                      | 13:51  |
| Mechanism                                                 |                      | 15:57  |
| 1,4-Addition of Enolates: Michael Reaction                |                      | 18:47  |
| Example: 1,4-Addition of Enolates                         |                      | 18:48  |
| 1,4-Addition of Enolates: Michael Reaction                |                      | 21:02  |
| Michael Reaction, Followed by Intramolecular Aldol        |                      | 21:03  |
| Mechanism of the Robinson Annulation                      |                      | 24:26  |
| Mechanism of the Robinson Annulation                      |                      | 24:27  |



# **Glycolysis** produces ATP for quick energy needs (sprint).

As **glucose** is converted to pyruvic acid, the carbon chain is shortened via a retro-aldol!

#### WorldLinks Muscle Power

Retro-aldol reactions play a vital role in many biochemical processes, including one of the processes by which energy is generated for our muscles. We first mentioned in Section 12.11 that energy in our bodies is stored in the form of ATP molecules. That is, energy from the food we eat is used to convert ADP into ATP, which is stored. When energy is needed, ATP is broken down to ADP, and the energy that is released can be used for various life processes, such as muscle contraction.

Adenosine diphosphate (ADP)

Adenosine triphosphate

Notice that the structural difference between ATP and ADP is in the number of phosphate groups present (two in the case of ADP, three in the case of ATP). The ATP molecules in our muscles are used for any activity that requires a short burst of energy, such as a tennis serve, jumping, or throwing a ball. For activities that last longer than a second, such as sprinting, ATP molecules must be synthesized on the spot. This is initially achieved by a process called glycolysis, in which a molecule of glucose (obtained from metabolism of the carbohydrates we eat) is converted into two molecules of pyruvic acid.

Glucose

Glycolysis involves many steps and is accompanied by the conversion of two molecules of ADP into ATP. This metabolic process therefore generates the necessary ATP for muscle contraction. One of the steps involved in glycolysis is a retro-aldol reaction, which is achieved with the help of an enzyme called aldolase.

The end product of alveolysis is pyruvic acid, which is used as a starting material in a variety of biochemical processes.

Glycolysis provides ATP for activities lasting up to 1.5 minutes. Activities that exceed this time frame, such as longdistance running, require a different process for ATP generation, called the citric acid cycle. Unlike glycolysis, which can be achieved without oxygen (it is an anaerobic process), the citric acid cycle requires oxygen (it is an aerobic process). This explains why we breathe more rapidly during and after strenuous activity. The term "aerobic workout" is commonly used to refer to a workout that utilizes ATP that was generated by the citric acid cycle (an aerobic process) rather than glycolysis (an anaerobic process). A casual athlete can sense a shift from anaerobic ATP synthesis to aerobic ATP synthesis after about 1.5 minutes. Seasoned athletes will detect the shift

occurring after about 2.5 minutes. If you watch the summer Olympics, you are likely aware of the distinction between sprinting and long-distance running. Athletes can run faster in a sprinting race, which relies mostly on glycolysis for energy production. Long-distance running requires the citric acid cycle for energy production.

