21-1

I. Review of the carbonyl, and keto-enol tautomerization (21.1)

The carbonvl

Keto-enol tautomerization

alpha (
$$\alpha$$
) O $|$ CH $_2$ —C—CH $_3$

carbon
$$CH_2$$
 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_2 CH_3 CH_3 CH_4 CH_5 CH_5 CH_6 CH_7 CH_8 CH_8

Tautomerization Mechanism: Ketone \rightarrow Enol (2 steps)

Tautomerization Mechanism: Ketone \rightarrow Enol (2 steps) Reverse Tautomerization Reaction:

$$\begin{array}{cccc} & \text{OH} & & \text{O} \\ & | & & \text{O} \\ \text{CH}_2 = \text{C} - \text{CH}_3 & & \text{CH}_3 - \text{C} - \text{CH}_3 \end{array}$$

Tautomerization Mechanism: Enol → Ketone (2 steps)

$$\begin{array}{c} \text{OH} \\ | \\ \text{CH}_2 \text{=-C-CH}_3 \end{array}$$

Why are a ketone's alpha protons acidic? Look at its conjugate base!

$$\begin{array}{c|c} O & & & O\\ || & & \text{base} & & \bigcirc & ||\\ CH_2-C-CH_3 & & \longrightarrow & CH_2-C-CH_3\\ | & & \\ H & & pK_a \sim 20 \end{array}$$

* acid-catalyzed mechanisms: enol is present

* base-catalyzed mechanisms: enolate is present

Formation of Other Carbanions (review)

$$CH_{3}CH_{3} \xrightarrow{base} CH_{3}CH_{2}$$

$$alkyne (pK_{a} \sim 25)$$

$$CH_{3}C = CH_{3}C = CH_{3}$$

$$CH_{3}C = CH_{2} \xrightarrow{base} CH_{2} = CH_{2}$$

$$alkene (pK_{a} \sim 36)$$

Formation of an Enolate: Choice of Base

$$CH_3$$
 CH_2 + NaOH \rightarrow
 $PK_a \sim 20$

* To completely deprotonate, need a much stronger base!

Lithium Diisopropyl Amide (LDA) is ideal

Question: why use NaOEt instead of NaOH?

Other Acidic "alpha" Protons

 pK_a

conjugate base

all are electron-withdrawing groups (EWG) that can stabilize an adjacent negative charge by resonance

Question: why is an ester less acidic than a ketone?

How are enolates used? 21-4

- * enolates are carbanions
- * carbanions are great **nucleophiles** (Nu:, electron-rich)

Possible **electrophiles** (E⁺, electron-poor):

$$R-X$$

X-X

α -Alkylation of Enolates (21.5)

- * S_N2 requires unhindered E⁺/RX (methyl or primary), or E2 happens
- * Enolate is a nucleophile at carbon
- * "C-alkylation" is preferred over "O-alkylation"
- * Mechanism using the preferred resonance form looks like this:

α -Halogenation of Ketones (21.2) (basic conditions)

lodoform test for methyl ketones (FYI, will not be on exam)

 α -Halogenation of Ketones (acid-catalyzed - use enol, not enolate)

$$\begin{array}{c|c} & & & \\ \hline & \\ \hline & & \\ \hline & \\ \hline & \\ \hline & & \\ \hline &$$

Mechanism: first, make enol (2 steps)

What other electrophiles/E⁺, beside RX, X₂?

Aldol Condensation (21.3)

Mechanism: In base, so deprotonate first! Where?

^{*} Aldol Reaction forms a new C-C bond between: the α carbon of one ketone (Nu:) and the carbonyl carbon of another (E⁺)

- * HO^- is ok LG for collapse of CTI and for β -elimination mechanism
- * Loss of H_2O is not E2! (HO⁻ is NOT a good LG for $S_N2/E2$)

$$H_{3}C$$
 OH
 CH_{3}

Aldol Summary

try SkillBuilders 21.2 & 21.3

Electrophile (E⁺)

Nucleophile (Nu:)

Base-catalyzed mechanism (neutral or ⊖ charges)

Acid-catalyzed mechanism (neutral or ⊕ charges)

Loss of H₂O (β-Elimination Mech.)

base mechanism

acid mechanism

- 1. make enolate
- 2. eject beta LG

Crossed/Mixed Aldol - reasonable if only one compound has α H's

$$CH_3$$
 + O H O H_2O

* Which is better E⁺? Alkyl groups **donate** electron density, so ketone is more electron-rich (aldehyde is the better E⁺).

Crossed/Mixed Aldol - control using a stepwise process (with LDA)

Aldol Retrosynthesis - Predict the aldol starting materials

$$\stackrel{\text{H}}{\longrightarrow} \longrightarrow$$

target molecule (TM)

try SkillBuilder 21.4

Claisen Condensation (21.4) (like an aldol reaction, but with esters)

$$CH_3$$
— C — OCH_2CH_3 OCH_3 OCH_3

$$\begin{array}{c|c} O \\ || \\ CH_3CH_2CH_2 - C - OCH_3 \end{array} & \begin{array}{c} 1) \text{ NaOCH}_3, \text{ CH}_3OH \\ \hline 2) \text{ H}_3O^+ \text{ (mild)} \end{array}$$

O O
$$||$$
 EtOCCH₂CH₂CH₂CH₂COEt $|$ 1) EtONa, EtOH $|$ 2) H₃O⁺ (mild)

try problems 21.24 – 21.28

"Messy Aldol" Homework (Gradescope)

Before working on this homework, review Mechanisms 21.4, 21.6 and work on SkillBuilders 21.2, 21.3. Predict the possible aldol products for the following reaction (provide 8 structures). Choose one of the mixed aldol final products (α,β -unsaturated ketone) and show the complete base-catalyzed mechanism.

Conjugate Additions - Reactions of Enones (21.6)

overall:

21-10

 α,β -unsaturated carbonyls

Nucleophiles can add to C=O carbon, called "1,2-addition" (Nu: = LiAlH₄, RMgX, RLi)

Nucleophiles can add to beta (β) carbon, called "1,4-addition" or "conjugate addition" (preferred by enolates and cuprates, R₂CuLi)

Question: Why can a nucleophile add to this alkene?

Typical alkene:

 α,β -unsaturated alkene:

Other electrophilic alkenes (called "Michael acceptors"):

EWG

^{**} All electron-withdrawing groups (EWG) can stabilized the C⁻ intermediate by resonance **

R₂CuLi - an organometallic reagent that prefers conjugate addition (1,4-addition)

* Use organocuprates in synthesis

* Prepare organocuprate from organolithium

$$CH_3Br$$
 \xrightarrow{Li} CH_3Li $2 CH_3Li$ \xrightarrow{CuI} $(CH_3)_2CuLi$

* Organocuprates also do "S_N2" with RX electrophile (not true for RMgX, RLi)

$$R_2$$
CuLi + R'X \longrightarrow R—R' (coupling reaction)

1,4-Addition of Enolates: Michael Reaction

Nu: = enolate
$$E^+$$
 = enone

EtO OEt
$$\begin{array}{c}
1) \text{ NaH} \\
0 \\
2) \\
\text{HC} \\
\text{OCH}_{3} \\
\text{CH}_{2} \\
3) \text{ H}_{3}\text{O}^{+} \text{ mild}
\end{array}$$

Michael Reaction example:

1,4-Addition of Enolates: Robinson Annulation

Michael reaction, followed by an intramolecular aldol

Stabilized enolates and the decarboxylation reaction (21.5)

 β -keto acids lose CO₂ when heated

mechanism: a *pericyclic* reaction

favorable 6-membered transition state (T.S.)

Example:

- <u>stable</u> enolate (easy to make/use)

- alkylation is high yield

Common Reagents

Transform Example::

Additional Advanced Synthesis Topic (FYI*) Synthetic Utility of Enamines (21.6)

21-15 *Will not be on the midterm/final

Enamines - synthetic equivalents of enolate nucleophile

Recall:

Reaction with ketone/aldehyde is different with 2° amine (R₂NH)

Example:

Use enamine as nucleophile (like an enolate!) See SkillBuilder 21.7 (Stork Enamine Synthesis)

Example:

3) H₃O⁺ heat

Organic Chemistry II CHM 3150, Dr. Laurie S. Starkey, Cal Poly Pomona **Chapter 21 Summary (Klein): Enols and Enolates**

- I. Review of the Carbonyl C=O (21.1)
 - A) carbonyl: carbonyl carbon is electrophilic (E^+), α -hydrogens are acidic
 - B) enol form is present in small amounts at equilibrium
 - i) keto-enol tautomerization mechanism (2-steps; protonation/deprotonation)
 - ii) enols make α-carbon of a carbonyl nucleophilic (Nu:)
- II. Review of Stabilized Carbanions (Nu:)
 - A) organometallics (RLi, RMgX, R₂CuLi, prepared from RX; 12.6)
 - B) alkynyl (9-10), cyanide, Wittig reagent (19.10)
 - C) resonance-stabilized (21.1) SkillBuilder 21.1
 - i) enolate (α to a carbonyl electron-withdrawing group)
 - ii) α to nitro (NO₂) or cyano (CN) electron-withdrawing groups (EWG)
 - iii) active methylene (CH₂ α to 2 EWG's)
- III. Formation and Reactions of Enols and Enolates
 - A) bases that can be used to deprotonate α hydrogens (LDA, NaNH₂, NaH) (21.1)
 - B) halogenation of the α carbon (base- and acid-catalyzed mechanisms) (21.2)
 - C) reactions with RX electrophiles (alkylation) (21.5)
 - D) selective alkylation of active methylenes (21.5)
- IV. Aldol Reaction & Aldol Condensation (21.3) SkillBuilder 21.2, SkillBuilder 21.3
 - A) forms a new C–C bond between an α -C (Nu:) and a carbonyl C (E⁺)
 - B) addition of heat to lose H₂O (β-elimination, E1cB)
 - C) acid- and base-catalyzed mechanisms
 - D) mixed/crossed aldol reactions SkillBuilder 21.4
 - E) Aldol skills/LOs: predict the product, draw mechanism (acid or base), retrosynthetic analysis of aldol product (β -hydroxy carbonyl or α,β -unsaturated carbonyl)
- V. Claisen Condensation (aldol reaction with esters) (21.4)
 - A) forms β -keto esters with active methylene groups (the reaction's driving force)
 - B) Claisen skills/LOs: predict the product, draw mechanism, explain choice of base & need for acidic workup, retrosynthetic analysis of Claisen product (β-ketoester)
- VI. Enones: α,β -unsaturated carbonyls (21.6)
 - A) definition of conjugated π bonds
 - B) resonance stabilized with a δ^+ on carbonyl carbon and β carbon (both are E^+)
 - C) 1,4-(conjugate) addition of Nu: (attack β carbon)
 - i) mechanism is via enolate intermediate
 - ii) possible for electrophilic alkenes (CH2=CH-EWG)
 - D) 1,4-(conjugate) addition of enolates
 - i) Michael reaction (enolate Nu: and enone E⁺)
 - ii) enolate and enone equivalents (carbonyl-like EWG's: -NO₂ and -CN)
 - iii) Robinson annulation
 - a) ketone + MVK gives cyclohexenones
 - b) mechanism: Michael addition followed by aldol condensation
 - E) FYI: Enamines (synthetic equivalent of enolates) SkillBuilder 21.7
 - i) ketone $+2^{\circ}$ amine \rightarrow enamine
 - ii) enamine + enone, then $H_3O^+ \rightarrow M$ ichael reaction iii) enamine + RX, then $H_3O^+ \rightarrow \alpha$ -alkylated ketone
- VII. Synthesis disconnection approach to retrosynthetic analysis (21.7) SkillBuilder 21.8
 - A) Synthesis with active methylenes (21.5) SkillBuilder 21.5, SkillBuilder 21.6
 - i) decarboxylation (– CO₂) of β-carbonyl acids
 - ii) use of malonic ester and acetoacetate ester as synthetic equivalents
 - B) Alkylation of α and β positions *SkillBuilder 21.9*

SKIP: Haloform reaction and HVZ reaction (section 21.2)

SKIP: Stork Enamine Synthesis (SkillBuilder 21.7)