21-1 ## I. Review of the carbonyl, and keto-enol tautomerization (21.1) The carbonvl Keto-enol tautomerization alpha ($$\alpha$$) O $|$ CH $_2$ —C—CH $_3$ carbon $$CH_2$$ CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_2 CH_3 CH_3 CH_4 CH_5 CH_5 CH_6 CH_7 CH_8 Tautomerization Mechanism: Ketone \rightarrow Enol (2 steps) Tautomerization Mechanism: Ketone \rightarrow Enol (2 steps) Reverse Tautomerization Reaction: $$\begin{array}{cccc} & \text{OH} & & \text{O} \\ & | & & \text{O} \\ \text{CH}_2 = \text{C} - \text{CH}_3 & & \text{CH}_3 - \text{C} - \text{CH}_3 \end{array}$$ Tautomerization Mechanism: Enol → Ketone (2 steps) $$\begin{array}{c} \text{OH} \\ | \\ \text{CH}_2 \text{=-C-CH}_3 \end{array}$$ Why are a ketone's alpha protons acidic? Look at its conjugate base! $$\begin{array}{c|c} O & & & O\\ || & & \text{base} & & \bigcirc & ||\\ CH_2-C-CH_3 & & \longrightarrow & CH_2-C-CH_3\\ | & & \\ H & & pK_a \sim 20 \end{array}$$ * acid-catalyzed mechanisms: enol is present * base-catalyzed mechanisms: enolate is present Formation of Other Carbanions (review) $$CH_{3}CH_{3} \xrightarrow{base} CH_{3}CH_{2}$$ $$alkyne (pK_{a} \sim 25)$$ $$CH_{3}C = CH_{3}C = CH_{3}$$ $$CH_{3}C = CH_{2} \xrightarrow{base} CH_{2} = CH_{2}$$ $$alkene (pK_{a} \sim 36)$$ #### Formation of an Enolate: Choice of Base $$CH_3$$ CH_2 + NaOH \rightarrow $PK_a \sim 20$ * To completely deprotonate, need a much stronger base! Lithium Diisopropyl Amide (LDA) is ideal Question: why use NaOEt instead of NaOH? ## Other Acidic "alpha" Protons pK_a conjugate base all are electron-withdrawing groups (EWG) that can stabilize an adjacent negative charge by resonance Question: why is an ester less acidic than a ketone? How are enolates used? 21-4 - * enolates are carbanions - * carbanions are great **nucleophiles** (Nu:, electron-rich) Possible **electrophiles** (E⁺, electron-poor): $$R-X$$ X-X #### α -Alkylation of Enolates (21.5) - * S_N2 requires unhindered E⁺/RX (methyl or primary), or E2 happens - * Enolate is a nucleophile at carbon - * "C-alkylation" is preferred over "O-alkylation" - * Mechanism using the preferred resonance form looks like this: ## α -Halogenation of Ketones (21.2) (basic conditions) lodoform test for methyl ketones (FYI, will not be on exam) α -Halogenation of Ketones (acid-catalyzed - use enol, not enolate) $$\begin{array}{c|c} & & & \\ \hline \\ \hline & & \\ \hline & \\ \hline & \\ \hline & & \\ \hline &$$ Mechanism: first, make enol (2 steps) What other electrophiles/E⁺, beside RX, X₂? #### **Aldol Condensation (21.3)** Mechanism: In base, so deprotonate first! Where? ^{*} Aldol Reaction forms a new C-C bond between: the α carbon of one ketone (Nu:) and the carbonyl carbon of another (E⁺) - * HO^- is ok LG for collapse of CTI and for β -elimination mechanism - * Loss of H_2O is not E2! (HO⁻ is NOT a good LG for $S_N2/E2$) $$H_{3}C$$ OH CH_{3} #### **Aldol Summary** ### try SkillBuilders 21.2 & 21.3 Electrophile (E⁺) Nucleophile (Nu:) Base-catalyzed mechanism (neutral or ⊖ charges) Acid-catalyzed mechanism (neutral or ⊕ charges) Loss of H₂O (β-Elimination Mech.) base mechanism acid mechanism - 1. make enolate - 2. eject beta LG Crossed/Mixed Aldol - reasonable if only one compound has α H's $$CH_3$$ + O H O H_2O * Which is better E⁺? Alkyl groups **donate** electron density, so ketone is more electron-rich (aldehyde is the better E⁺). Crossed/Mixed Aldol - control using a stepwise process (with LDA) #### Aldol Retrosynthesis - Predict the aldol starting materials $$\stackrel{\text{H}}{\longrightarrow} \longrightarrow$$ target molecule (TM) try SkillBuilder 21.4 ## Claisen Condensation (21.4) (like an aldol reaction, but with esters) $$CH_3$$ — C — OCH_2CH_3 OCH_3 $$\begin{array}{c|c} O \\ || \\ CH_3CH_2CH_2 - C - OCH_3 \end{array} & \begin{array}{c} 1) \text{ NaOCH}_3, \text{ CH}_3OH \\ \hline 2) \text{ H}_3O^+ \text{ (mild)} \end{array}$$ O O $$||$$ EtOCCH₂CH₂CH₂CH₂COEt $|$ 1) EtONa, EtOH $|$ 2) H₃O⁺ (mild) *try problems* 21.24 – 21.28 ## "Messy Aldol" Homework (Gradescope) Before working on this homework, review Mechanisms 21.4, 21.6 and work on SkillBuilders 21.2, 21.3. Predict the possible aldol products for the following reaction (provide 8 structures). Choose one of the mixed aldol final products (α,β -unsaturated ketone) and show the complete base-catalyzed mechanism. ## **Conjugate Additions - Reactions of Enones (21.6)** overall: 21-10 α,β -unsaturated carbonyls Nucleophiles can add to C=O carbon, called "1,2-addition" (Nu: = LiAlH₄, RMgX, RLi) Nucleophiles can add to beta (β) carbon, called "1,4-addition" or "conjugate addition" (preferred by enolates and cuprates, R₂CuLi) Question: Why can a nucleophile add to this alkene? Typical alkene: α,β -unsaturated alkene: Other electrophilic alkenes (called "Michael acceptors"): EWG ^{**} All electron-withdrawing groups (EWG) can stabilized the C⁻ intermediate by resonance ** R₂CuLi - an organometallic reagent that prefers conjugate addition (1,4-addition) * Use organocuprates in synthesis * Prepare organocuprate from organolithium $$CH_3Br$$ \xrightarrow{Li} CH_3Li $2 CH_3Li$ \xrightarrow{CuI} $(CH_3)_2CuLi$ * Organocuprates also do "S_N2" with RX electrophile (not true for RMgX, RLi) $$R_2$$ CuLi + R'X \longrightarrow R—R' (coupling reaction) ## 1,4-Addition of Enolates: Michael Reaction Nu: = enolate $$E^+$$ = enone EtO OEt $$\begin{array}{c} 1) \text{ NaH} \\ 0 \\ 2) \\ \text{HC} \\ \text{OCH}_{3} \\ \text{CH}_{2} \\ 3) \text{ H}_{3}\text{O}^{+} \text{ mild} \end{array}$$ Michael Reaction example: ## 1,4-Addition of Enolates: Robinson Annulation Michael reaction, followed by an intramolecular aldol #### Stabilized enolates and the decarboxylation reaction (21.5) β -keto acids lose CO₂ when heated mechanism: a *pericyclic* reaction favorable 6-membered transition state (T.S.) Example: - <u>stable</u> enolate (easy to make/use) - alkylation is high yield **Common Reagents** Transform Example:: # Additional Advanced Synthesis Topic (FYI*) Synthetic Utility of Enamines (21.6) 21-15 *Will not be on the midterm/final Enamines - synthetic equivalents of enolate nucleophile Recall: Reaction with ketone/aldehyde is different with 2° amine (R₂NH) Example: Use enamine as nucleophile (like an enolate!) See SkillBuilder 21.7 (Stork Enamine Synthesis) Example: 3) H₃O⁺ heat #### Organic Chemistry II CHM 3150, Dr. Laurie S. Starkey, Cal Poly Pomona **Chapter 21 Summary (Klein): Enols and Enolates** - I. Review of the Carbonyl C=O (21.1) - A) carbonyl: carbonyl carbon is electrophilic (E^+), α -hydrogens are acidic - B) enol form is present in small amounts at equilibrium - i) keto-enol tautomerization mechanism (2-steps; protonation/deprotonation) - ii) enols make α-carbon of a carbonyl nucleophilic (Nu:) - II. Review of Stabilized Carbanions (Nu:) - A) organometallics (RLi, RMgX, R₂CuLi, prepared from RX; 12.6) - B) alkynyl (9-10), cyanide, Wittig reagent (19.10) - C) resonance-stabilized (21.1) SkillBuilder 21.1 - i) enolate (α to a carbonyl electron-withdrawing group) - ii) α to nitro (NO₂) or cyano (CN) electron-withdrawing groups (EWG) - iii) active methylene (CH₂ α to 2 EWG's) - III. Formation and Reactions of Enols and Enolates - A) bases that can be used to deprotonate α hydrogens (LDA, NaNH₂, NaH) (21.1) - B) halogenation of the α carbon (base- and acid-catalyzed mechanisms) (21.2) - C) reactions with RX electrophiles (alkylation) (21.5) - D) selective alkylation of active methylenes (21.5) - IV. Aldol Reaction & Aldol Condensation (21.3) SkillBuilder 21.2, SkillBuilder 21.3 - A) forms a new C–C bond between an α -C (Nu:) and a carbonyl C (E⁺) - B) addition of heat to lose H₂O (β-elimination, E1cB) - C) acid- and base-catalyzed mechanisms - D) mixed/crossed aldol reactions SkillBuilder 21.4 - E) Aldol skills/LOs: predict the product, draw mechanism (acid or base), retrosynthetic analysis of aldol product (β -hydroxy carbonyl or α,β -unsaturated carbonyl) - V. Claisen Condensation (aldol reaction with esters) (21.4) - A) forms β -keto esters with active methylene groups (the reaction's driving force) - B) Claisen skills/LOs: predict the product, draw mechanism, explain choice of base & need for acidic workup, retrosynthetic analysis of Claisen product (β-ketoester) - VI. Enones: α,β -unsaturated carbonyls (21.6) - A) definition of conjugated π bonds - B) resonance stabilized with a δ^+ on carbonyl carbon and β carbon (both are E^+) - C) 1,4-(conjugate) addition of Nu: (attack β carbon) - i) mechanism is via enolate intermediate - ii) possible for electrophilic alkenes (CH2=CH-EWG) - D) 1,4-(conjugate) addition of enolates - i) Michael reaction (enolate Nu: and enone E⁺) - ii) enolate and enone equivalents (carbonyl-like EWG's: -NO₂ and -CN) - iii) Robinson annulation - a) ketone + MVK gives cyclohexenones - b) mechanism: Michael addition followed by aldol condensation - E) FYI: Enamines (synthetic equivalent of enolates) SkillBuilder 21.7 - i) ketone $+2^{\circ}$ amine \rightarrow enamine - ii) enamine + enone, then $H_3O^+ \rightarrow M$ ichael reaction iii) enamine + RX, then $H_3O^+ \rightarrow \alpha$ -alkylated ketone - VII. Synthesis disconnection approach to retrosynthetic analysis (21.7) SkillBuilder 21.8 - A) Synthesis with active methylenes (21.5) SkillBuilder 21.5, SkillBuilder 21.6 - i) decarboxylation (– CO₂) of β-carbonyl acids - ii) use of malonic ester and acetoacetate ester as synthetic equivalents - B) Alkylation of α and β positions *SkillBuilder 21.9* **SKIP**: Haloform reaction and HVZ reaction (section 21.2) SKIP: Stork Enamine Synthesis (SkillBuilder 21.7)