- I. Physical Properties (20.3)
- II. Preparation of RCO₂H (20.4)
 - A) oxidation of aldehydes and 1° alcohols (12.10) and ozonolysis of alkynes (9.9)
 - B) organometallic reagents + CO₂
 - C) hydrolysis of carboxylic acid derivatives (RCN, RCOLG) SkillBuilder 20.1
- III. Preparation of Carboxylic Acid Derivatives
 - A) features of the leaving group, LG (20.7)
 - B) acid halides (20.8)
 - C) anhydrides (20.9)
 - D) esters (20.10)
 - E) amides (20.12)
- IV. Reactions of Carboxylic Acids and Derivatives with Nucleophiles (20.11, 20.12)
 - A) reduction reactions of carboxylic acids and derivatives (12.4) SkillBuilder 12.4
 - B) organometallic reagents (12.6)
 - C) special reagents (if time allows)
- V. Synthesis (20.14) SkillBuilder 20.2, SkillBuilder 20.3
- VI. Nomenclature (20.1, 20.2)

Read on your own: Spectroscopy (section 20.15)

20-1

Review Reactions of Ketone/Aldehyde

Carbonyl Reactivity:

Nucleophile = hydride (reduction)

$$CH_3$$
 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3

Nucleophile = Grignard

Nucleophile = alcohol

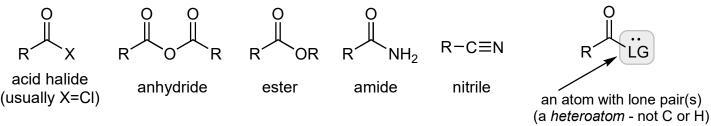
Nucleophile = amine

$$O$$
 CH_3NH_2
 $TsOH$

Carboxylic Acid

-- OH group _____ electron density to carbonyl

-- RCO₂H is _____ electron-rich than ketone/aldehyde


-- ketone/aldehyde is more δ +, better electrophile (E⁺)

Ketone vs. Ester Reactivity

$$\begin{array}{c|c} O & NaBH_4 \\ \hline CH_3OH & OCH_3 & CH_3OH \\ \hline ketone & ester & \\ \end{array}$$

Carboxylic Acid Derivatives

General structure:

General Reactions of Carboxylic Acid Derivatives

- -- overall, a substitution reaction
- -- acyl substitution mechanism described as "addition-elimination"
- -- has both acid- and base-catalyzed mechanisms

I. Physical Properties of Carboxylic Acids (20.3)

insoluble in neutral H₂O, but soluble in basic H₂O (aq. NaOH)

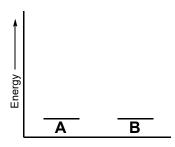
Acidity of Carboxylic Acids, RCO₂H

20-3

carboxylic acid (pK_a~5)

** In basic conditions (HO⁻/RO⁻), RCO₂H becomes RCO₂⁻ **

Why are pK_a's so different? Look at conjugate bases!


VS.

** Something that will stabilize the conjugate base will make a stronger acid **

Which is the stronger acid?

Α

VS.

Note: Inductive effects decrease with distance

II. Preparation of Carboxylic Acids, RCO₂H (20.4)

A) Preparation of RCO₂H by oxidation

Oxidation of aldehydes or primary alcohols

oxidizing agents [ox]

Oxidation of alkenes or alkynes (ozonolysis)

Ph-C
$$\equiv$$
C-CH₃ $\frac{1) O_3}{2) H_2O \text{ workup}}$

Ph
$$CH_3$$
 $\frac{1) O_3}{2) \text{ reductive wkup}}$ (Zn or DMS)

B) Preparation of RCO₂H from Organometallic Reagents

RLi or RMgX
$$\frac{1) CO_2}{2) H_3O^+}$$
 R—C—OH ** use in synthesis: new C–C bond! **

mechanism:

Synthesis Example:

^{**} Note: basic reaction conditions require acidic workup to get neutral carboxylic acid product **

C) Preparation of RCO₂H by hydrolysis of carboxylic acid derivatives

20-5

** All carboxylic acid derivatives give RCO₂H (or RCO⁻) upon hydrolysis **

Ester example:

*Base-promoted (not "catalyzed" because base is consumed)

Hydrolysis mechanism (base-promoted):

Overall, this is a substitution reaction

Nu: =
$$LG =$$

-- RO $^{\!-}$ is bad LG for S_N1 and S_N2

$$S_{N2}$$
?
HO: $CH_3CH_2-OCH_3$ $\xrightarrow{S_{N2}}$ $CH_3CH_2-OCH_3$ + CH_3O :

-- RO⁻ is okay LG for collapse of CTI

charged tetrahedral intermediate (CTI) (2 groups with lone pairs) History:

animal fat

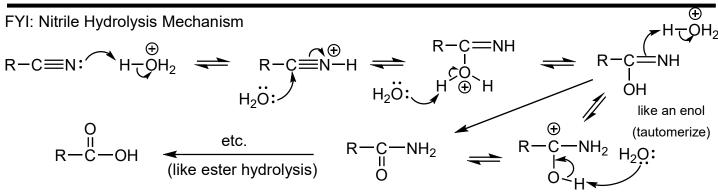
wood ash

soap!

Acid-catalyzed hydrolysis mechanism...no Θ charges!

$$O$$
 CH_3
 OCH_3
 H_3O^+

Note: ester hydrolysis **requires** acid or base (not neutral H₂O)


H₂O: weak Nu:

In basic conditions:

In acidic conditions:

strong Nucleophile (Nu:) strong Electrophile (E⁺)

Try SkillBuilder 20.1

Use of nitriles in synthesis

⊖ :C≡N: is a good nucleophile

Example:

$$CI$$
 CH_3
 CH_3

III. Preparation of Carboxylic Acid Derivatives

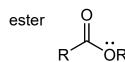
Carboxylic Acid Derivatives

$$\mathbb{R} \stackrel{\bigcirc}{\not\downarrow} \mathbb{R}$$

ester

amide

nitrile


an atom with lone pair(s)
(a heteroatom - not C or
H)

acid halide (usually

X=CI)
A) features of the leaving group, LG (20.7)

anhydride

Which is the better electrophile/E⁺, an ester or an amide?

VS.

amide

inductive effects: ** Oxygen is more electronegative than nitrogen

resonance effects:

Which is the better electrophile/E⁺, an ester or an acid chloride?

ester O ...

VS.

acid chloride

inductive effects: ** Both oxygen and chlorine atoms withdraw electron density resonance effects:

Which is the better electrophile/E⁺, a carboxylic acid or an anhydride?

inductive effects: ** Both have oxygen atoms withdrawing electron density resonance effects:

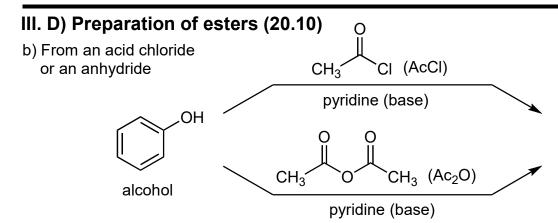
Summary: Order of Electrophilicity and Leaving Group Ability

LG:

Carboxylic Acid Derivative Interconversion

III. C) Preparation of anhydrides (20.9)

a) Dehydration of carboxylic acids (to prepare symmetrical anydrides)


*need to drive off H₂O - use heat and/or drying agent

Example:

succinic acid

$$\begin{array}{c}
O \\
O \\
O \\
O \\
O \\
CH_3 - C - O - C - CH_3
\end{array}$$

b) From an acid chloride (to make a mixed anhydride)

$$\begin{array}{c} \mathsf{O} \\ \mathsf{II} \\ \mathsf{CH}_3-\mathsf{C}-\mathsf{OH} \\ \end{array} + \\ \begin{array}{c} \mathsf{CH}_3\mathsf{CH}_2\mathsf{OH} \\ \end{array} \begin{array}{c} \mathsf{acid} \\ \mathsf{CH}_3-\mathsf{C}-\mathsf{OCH}_2\mathsf{CH}_3 \\ \end{array} + \\ \begin{array}{c} \mathsf{H}_2\mathsf{O} \\ \end{array}$$

acid (HA) = H_2SO_4 , TsOH, HCI (not H_3O^+)

mechanism? addition/elimination! (exact reverse of hydrolysis)

Example: Predict the Product

c) Preparation of esters by transesterification

$$\begin{array}{c} \text{O} \\ \text{||} \\ \text{CH}_3-\text{C}-\text{OCH}_2\text{CH}_3 & + & \text{CH}_3\text{OH} \\ \hline \end{array} \begin{array}{c} \text{acid} \\ \text{CH}_3-\text{C}-\text{OCH}_3 & + & \text{CH}_3\text{CH}_2\text{OH} \\ \hline \end{array}$$

equilibrium can be shifted by removal of ROH or excess ROH mechanism (add curved arrows):

d) Preparation of esters by S_N2 with carboxylate

Example: using diazomethane to make a methyl ester

$$\begin{array}{c}
O \\
OH
\end{array}$$

$$\begin{array}{c}
CH_2N_2 \\
\hline
\text{(diazomethane)}
\end{array}$$

mechanism

$$\bigcirc_{O-H} \quad \stackrel{\ominus}{:}_{CH_2-N} \stackrel{\ominus}{\equiv}_{N}: \quad \longrightarrow$$

Example: Transform

III. E) Preparation of amides (20.12)

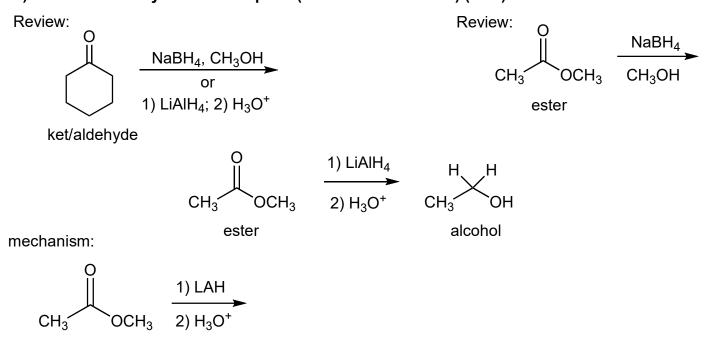
a) from an acid chloride or an anhydride

$$CH_3$$
 CH_3
 CH_3
 CH_3

(+ HCl) or (+
$$CH_3CH_2CO_2H$$
)

b) by partial hydrolysis of nitriles

$$CH_3CH_2Br$$
 \longrightarrow $CH_3CH_2-C-NH_2$ \Longrightarrow $CH_3CH_2-C\equiv N$


Find alternate path:

$$CH_3CH_2Br$$
 \longrightarrow $CH_3CH_2-C-NH_2$

$$\begin{array}{c} \text{O} \\ \text{II} \\ \text{CH}_3-\text{C}-\text{OH} \\ \text{carboxylic acid} \end{array} + \text{NH}_3 \\ \longrightarrow \begin{array}{c} \text{O} \\ \text{II} \\ \text{CH}_3-\text{C}-\text{NH}_2 \\ \end{array}$$

IV. Reactions of Carboxylic Acids and Derivatives with Nucleophiles (20.11-12)

A) Reaction with hydride nucleophile (a reduction reaction) (12.4)

R = OH, OR, CI, OCOR

alcohol

B) Reaction with Grignard nucleophile (12.6, 20.11)

Review: O 1)
$$CH_3MgBr$$
 HO CH_3 ketone or aldehyde 2) H_3O^+

lactone
$$\frac{1) \text{ PhLi (xs)}}{2) \text{ H}_3\text{O}^+}$$

C) FYI: Special hydride and organometallic reagents

Diisobutylaluminum hydride (20.11) DIBAL or DIBAH

$$AI-H$$
 or $(i-Bu)_2AII$

- or $(i-Bu)_2AIH$ ** less reactive, more selective than $LiAIH_4$ ** adds only one equivalent of hydride to ester

Example: stable - no collapse

reagents with similar reactivity: Li(t-BuO)₃AlH and NaBH₃CN

Organocuprate reactions with acid chlorides (20.8)

- ** organometallic reagent that is less reactive than RMgBr
- ** adds only one equivalent of "R" to acid chloride

Example:

** if product is less reactive than starting material, it's possible to stop the reaction **

Organic Chemistry II CHM 3150, Dr. Laurie S. Starkey, Cal Poly Pomona Chapter 20 Summary (Klein), Carboxylic Acids & Their Derivatives

- I. Physical Properties (20.3)
 - A) water solubility of RCO₂H and RCO₂Na
 - B) acidity of RCO₂H (see pK_a Table 3.1)
 - i) look at inductive and/or resonance effects to stabilize the conjugate base
- II. Preparation of RCO₂H (20.4)
 - A) oxidation of aldehydes and 1° alcohols (12.10) and ozonolysis of alkynes (9.9)
 - i) Na₂Cr₂O₇, H₂SO₄ (chromic acid, Jones)
 - ii) KMnO₄, NaOH, H₂O (permanganate)
 - iii) Ag₂O, NaOH, H₂O (Tollens test for aldehydes)
 - B) organometallic reagents + CO₂
 - C) hydrolysis of carboxylic acid derivatives, RCN or RCOLG
 - i) Addition of H_2O/E limination of LG = acyl substitution
 - ii) acid- and base-catalyzed mechanisms (SkillBuilder 20.1)
 - iii) saponification reaction: lipids, fats, oils and soaps
 - iv) nitrile hydrolysis (20.13) and its use in synthesis (19.10)
- III. Preparation of Carboxylic Acid Derivatives
 - A) features of the leaving group, LG (20.7)
 - i) electrophilicity trends and leaving group ability: compare derivatives!
 - B) acid halides (20.8)
 - C) anhydrides (20.9)
 - D) esters (20.10)
 - E) amides (20.12)
- IV. Reactions of Carboxylic Acids and Derivatives with Nucleophiles (20.11, 20.12)
 - A) reduction reactions of carboxylic acids and derivatives (12.4)
 - i) adds 2 equiv. of LiAlH₄ (LAH) to give an alcohol (N.R. with NaBH₄)
 - ii) mechanism (Mechanism 12.3, SkillBuilder 12.4)
 - a) addition of LAH ("H:-" nu:) to C=O carbon (E⁺)
 - b) collapse of CTI to eliminate LG
 - c) addition of 2nd equiv. of LAH
 - d) protonation of O⁻ by H₃O⁺ workup to give alcohol product
 - iii) exception: LAH reduction of amides and nitriles give amine products
 - B) organometallic reagents (12.6, Mechanism 12.5)
 - i) adds 2 equiv. of RMgX or RLi to give an alcohol product
 - ii) mechanism: same as above but carbon nu: ("R:-") instead of hydride, "H:-"
 - C) FYI: special reagents (cuprates, modified LAH)
- V. Synthesis (20.14, SkillBuilder 20.2, SkillBuilder 20.3)
- VI. Nomenclature (20.1, 20.2)
 - A) alkanoic acid (RCO₂H)
 - B) alkanoyl halide (RCOX)
 - C) alkanoic anhydride (RCO₂COR)
 - D) alkyl' alkanoate (RCO₂R')
 - E) alkanamide (RCONH₂), N-alkyl'alkanamide (RCONHR')
 - F) alkanenitrile (RCN)