CHM	13150-Organic Chemistry- Br. Stadley 16-1
	16 - Conjugated Dienes
*	Conjugated to bonds (16.1-16.2) (eg. 1,3-butadiene) aligned sets of porbitals can interact/delocalize *Resonance!*
obout a single bond	more stable less stable
	Diene Stability -70.3 Cumulated (L porbitals) -60.7 (Attalkunexa) 1-splated (unrelated porb.)
The second secon	Conjugated (aligned povb) Allylic carbocations.) + radicals

* both are resonance stabilized (delocalized ein porbitals)

16.2 Electrophilie Additions to Dienes (164) Recall: alhenes HX Markovnikov Addn (8-2,8-3,8-8) X2 X Markovnikov Addn Mechanism (2-steps) Alhene: protonate * the reason behind Markovnikovis Rule Diene: profonation (Mark) 1,2 "kmehe" product 1,4 "thermodynamic" product -afavored in cold rxn conditions -> favored in hot vxn. cond.

KINETIC 15. Thermodynamic Control (16.5)

Spredict Vmajor?

1,2 (less stable product)

1.4 (more stable produc

* Diels-Alder is a concerted, pericyclic reaction called a [4+2] cycloaddition

Dienophiles (Et)

ralkene or alkyne

-> best if e poor (typically has EWG)

IT EWG = -CN, lor, lR, NOZ

Why are these good E+? Top

Alkeyne Example

Cast

Cast

Dienes (nu:)

+ best if e-rich (often has EDG: -R, -OR, -AFI)

Why are these good nu:?

consider:

stable?

- -> endo is major product if bicyclic
- stereochem. of dienophile is retained
- chiral products are formed as racemate

EX: [CORET A

EX. Suc Coset A

Regiochemistry of the Diels-Alder Rin

Rule: 1,2-product preferred over 1,3
Scho Phy Cho Ph

Why! See discussion & MO Theory: highest occupied Mo (Homo) + lowest unoccopied (Lu best nu: + best E+

EX. TH C

predict: CH3 Consider: reglochemistry + stereochemistry!

A)
$$\mathsf{tBu}$$
 + O Δ No Reaction (explain)

B) + NC
$$\leftarrow$$
 CN \triangle

(why is it okay to do a Diels-Alder on anthracene, an aromatic compound?)

$$C)$$
 CO_2Et
 CO_2Et

synthesize the above TM from starting materials containing no more than six carbon atoms (first, consider retrosynthesis)

$$\stackrel{\mathrm{D})}{=\!\!\!\!=\!\!\!\!-} \mathrm{CN} \quad + \quad \bigvee \stackrel{\mathrm{OCH_3}}{\longrightarrow} \quad \stackrel{\Delta}{\longrightarrow} \quad$$

which pi bond reacts? (explain)

Molecular Orbital theory of bonding

MO theory of aromaticity

Molecular Orbital theory of conjugated systems (UV-Vis Spectroscopy) (Klein 16.11)

Molecular Orbital theory of chemical reactions

Nucleophile (electron donor) uses electrons in the highest occupied molecular orbiral (HOMO) **Electrophile** (electron acceptor) has a vacancy in the lowest unoccupied molecular orbiral (LUMO)

MO theory of pericyclic reactions (the Woodward-Hoffmann rules) (Klein 16.8) 16-9

Heat-promoted pericyclic reactions Light-promoted pericyclic reactions

4+2 cycloadditions are thermally/photochemically allowed

$$\| \quad \| \stackrel{\Delta}{\longrightarrow} \quad \underset{\text{Reaction}}{\text{No}}$$

2+2 cycloadditions are thermally/photochemically allowed

Why is a [4+2] cycloaddition thermally allowed while the [2+2] is not?

Butadiene

thermal [4+2] cycloaddition is allowed

Ethene HOMO
$$(\pi)$$

Ethene LUMO (
$$\pi^*$$
)

thermal [2+2]cycloaddition is forbidden

Why is a [2+2] cycloaddition photochemically allowed?

light is

Ethene MO's

HOMO of excited state

LUMO of ground state

