Klein-Starkey Chapter 13 Outline - Ethers (ROR') & Epoxides ($\stackrel{\circ}{\triangle}$) - I. Structure & Properties of ethers (13.1, 13.3) - II. Preparation of ethers (13.5) - a) Williamson ether synthesis - b) Epoxide formation (13.8) - III. Reactions of ethers with HBr and HI (13.6) - IV. Reactions of epoxides (13.9) - a) Acid-catalyzed mechanism - b) Base-catalyzed mechanism - c) Stereochemistry of ring-opening - d) Regiochemistry of ring-opening - V. Synthetic strategies (13.10) - VI. Thiols (RSH) and sulfides (RSR') (13.11) Ether topic already covered (with Ch. 12) - nomenclature (13.2 & SkillBuilder 13.1) #### skip the following sections: - 13.4 crown ethers - 13.7 epoxide nomenclature - 13.12 enantioselective epoxidation #### I. Properties of ethers (13.3) Ether R-O-R - no "OH" group, so no hydrogen bonds between ether molecules - polar, so ethers make good solvents - can accept H-bonds from water, so ethers have some water solubility Water Solubility (grams per 100 mL H₂O) ### a) Williamson Ether Synthesis Examples: Intramolecular S_N2 (gives cyclic ethers) - good for 3-, 5- or 6-membered rings only - favored over intermolecular $S_N 2$ (due to entropy) #### Planning an ether synthesis synthesize this ether: target molecule (TM) Example: this target molecule has two possible disconnections Starting with propanol as the only source of carbon atoms, synthesize dipropyl ether. Transform: ## II. b) Preparation of epoxides (13.8) a) via Williamson Ether Synthesis $$\frac{Br_2}{H_2O}$$ NaOH b) via oxidation - ethers are generally very stable, unreactive - ethers have no leaving group, no acidic protons - ethers make good solvents (polar, unreactive) Any reaction possible? Yes! Reaction with HBr or HI... $$CH_3$$ — O — CH_2CH_3 HBr CH_3 — Br + Br — CH_2CH_3 mechanism: #### IV. Epoxide Ring-Opening Reactions (13.9) RO[⊙] as a leaving group?! LG is bad, but ring strain is released Example: $$H_2C$$ CH_2 CH_3OH, H_2SO_4 Or^* CH_3ONa, CH_3OH Mechanism (P.A.D.): - * Note: no O⁻ charges in acid (no HO⁻, no RO⁻) - * Note: acid is a catalyst (used and regenerated not consumed) try SkillBuilder 13.5 #### IV. b) Base-catalyzed epoxide ring opening Mechanism: - * Note: no O⁺ charges in base (structures are neutral or negatively charged) - * Note: base is a catalyst (used and regenerated not consumed) - ** A catalyst is needed for epoxide ring opening (must be either strongly acidic or strongly basic) ** #### IV. c) Stereochemistry of epoxide ring opening (S_N2 mechanism) 13-6 acid or base mechanism? Example: Transform #### IV. d) Regiochemistry of epoxide ring opening (depends on reaction conditions) In base: - * Nucleophile attacks neutral epoxide - * S_N2 is controlled by *sterics* - * Nu: goes to In acid: (P.A.D.) - * Nucleophile attacks **protonated** epoxide - * S_N 2 with some S_N 1 character (due to + charge) - * reaction is controlled by electronics - * Nu: goes to Examples: $$\frac{\text{HI}}{\text{(1 equiv.)}}$$ $$\frac{1) \text{LiAID}_4}{2) \text{H}_3\text{O}^+}$$ #### try SkillBuilder 13.4 Predict the Product ## V. Synthetic strategies (13.12) $$CH_3$$ CH_3 H OCH_2CH_3 CH_3 H OCH_2CH_3 CH_3 $CH_$ $$R-O-R'$$ target molecule (TM) Example: Synthesize TBME (*t*-butyl methyl ether) from alcohol starting materials: