Is hydroxide a strong enough base to deprotonate acetic acid (CH₃CO₂H)? Explain. $$CH_3$$ C CH_3 C CH_3 C CH_3 C CH_3 CH_4 CH_5 - A) Because hydroxide is less stable than this: $CH_3 \overset{\text{II}}{C} \overset{\text{O}}{C}$ hydroxide is a suitable base to deprotonate acetic acid. - B) Because hydroxide is less stable than this: $CH_3 C O^{\Theta}$ hydroxide is NOT a suitable base to deprotonate acetic acid. - C) Because hydroxide is less stable than this: $CH_3 C OH$ hydroxide is a suitable base to deprotonate acetic acid. - D) Because hydroxide is less stable than this: CH₃-C-OH hydroxide is NOT a suitable base to deprotonate acetic acid. - E) It's impossible to predict the direction of the equilibrium without pK_a data.