Chapter Outline

I. Alkene & Alkyne nomenclature (8.2, 8.3, 9.2)

II. Addition reactions & addition of HX (8.1, 8.4, 8.5)

III. Addition of H₂O (add -H and -OH across pi bond)

A) Acid-catalyzed hydration, H₃O⁺(8.6)

B) Oxymercuration-Demercuration (8.7)

C) Hydroboration-Oxidation (8.8)

IV. Addition of Br_2 and Br_2/H_2O (8.10)

V. Hydrogenation, add -H and -H (8.9)

VI. Oxidation reactions

A) Epoxidation (8.10) skip ring-opening reactions

B) Syn Dihydroxylation (8.11)

C) Ozonolysis (8.12)

VII. Summary & synthesis strategies (8.14, 8.15)

Recall:

$$R \subset R$$

alkenes are planar (sp² hybridized C atoms)

Recall:

π bond is formed by overlapping p orbitals
 3-D sketch: p orbitals are orthogonal to sp² plane

Recall:

- π bonds are higher energy than σ bonds

- π bonds are electron-rich (can react as a **nucleophile** or a **base**)

I. Alkene & Alkyne nomenclature (8.3, 9.2)

Alkene IUPAC Rules: Identify the longest parent carbon chain that contains the π bond(s). Number from the end closer to the π bond. Change the alkane "a" to an "e" to give "#-alkene," where # is the first carbon in the double bond (or the number can be inserted into the name "alk-#-ene"). Don't forget to include the configuration where stereochemistry is appropriate (*cis, trans, E, Z;* see Klein 5.11). A compound with two double bonds is called "#,#-alkadiene" (triene, tetraene...).

alkane	alkene	alkyne
CH ₃ -CH ₃	$CH_2 = CH_2$	нс≡сн
eth a ne		eth y ne
	(ethylene)	(acetylene)

$$CH_3$$
— C — CH_2 — CH_3
 CH_3 — CH_3
 CH_2 CH_3

(allyl chloride)

2-propyl-1-octene (note Educator error!) also: 2-propyloct-1-ene

(double bond in a ring **defines C-1 and C-2**, and **cis stereochemistry** assumed)

Alkene Nomenclature: Stereochemistry

* for alkenes with two groups (and two H atoms), use cis or trans.

* for alkenes with more than two groups, stereodescriptors (E) and (Z) are used (see Klein Ch. 5)

priority

#2

priority #2 CH₃ priority priority

Are the higher priority groups on "ze same side" ? Yes! (Z)-2-chloro-2-butene

Are the higher priority groups on "ze same side"? No! (E)-2-chloro-2-butene

IUPAC:

IUPAC:

Alkyne IUPAC Rules: Change the alkane "a" to an "y" to give "#-alkyne," where # is the first carbon in the triple bond. A compound with two double bonds is called "#,#-alkadiyne" (or triyne...)

HC≡CH

(acetylene)

(propargyl bromide)

3-methyl-4-phenyl-1-hexyne (note Educator error with doubly numbered C!)

$$CH_3$$
- CH = CH - CH_2 - C \equiv C - CH = CH_2

(FYI an alkene has a higher priority than an alkyne)

SkillBuilder 9.1

I. Addition of HX (Hydrohalogenation, Klein 8.1 to 8.5)

$$CH_3$$
— CH = CH_2 + HBr —

- * a "regioselective" reaction (Br adds primarily to only one region/site)
- * "Markovknikov Addition" is observed

Why this regioselectivity? Look at the mechanism (2 steps):

$$CH_3$$
— CH — CH_2 H — Br

** Markovnikov Addition is favored because it involves the **more stable** carbocation intermediate**

- more stable means lower Energy carbocation intermediate
- more stable carbocation has lower-energy Transition State, making E_a smaller (smaller hill)
- the reaction involving the more stable carbocation is *faster* (kinetic effect)

Klein textbook note: Anti-Markovnikov addition of HBr

- * H adds to carbon with fewer H atoms
- * takes place via a radical mechanism (Ch. 10)
- * reagents used HBr with peroxides: **HBr/ROOR**

Start building up a set of flashcards to study O-Chem reactions and organize material. From any new reaction we learn in class, you can create **THREE** flashcards:

Sample Flashcards (Markovnikov and Anti-Mark. Addition of HBr to an Alkene)

Useful for preparing for final, reviewing material in 2nd semester and *planning a synthesis.

A) Acid-Catalyzed Hydration of Alkenes (Klein 8.6)

$$\begin{array}{c} & & \\ \hline \\ H_2SO_4 \\ \\ \text{alkene} \end{array}$$

Mechanism (3 steps, P.A.D.)

Note: the acid-catalyzed **hydration** mechanism is the exact reverse of alcohol **dehydration** mech.

Predict the major product:

$$CH_3 \xrightarrow{H_2O}$$

B) Oxymercuration-Demercuration, a 2-step process (Klein 8.7)

$$CH_3$$
 CH_3 OH CH_3 OH $HgOAc$ $2)$ $NaBH_4$ H

- * gives Markovnikov addition of H₂O
- * generally higher yielding than H₃O⁺
- * no carbocation in mechanism, so no rearrangements

Oxymercuration Mechansim (FYI - will not be on exams)

CH₃ :Hg OAc CH₃
$$\oplus$$
 OAc CH₃ OH HgOAc

ROH CH₃ OR CH₃ OR CH₃ OR CH₃ OR HgOAc

ROH HgOAc 2) NaBH₄

(FYI we will see *Alkoxymercuration* reaction in Ch.13)

C) Hydroboration-Oxidation, a 2-step process (Klein 8.8)

** add H₂O with ______ regiochemistry **

Hydroboration mechanism

regioselective

* bulky Boron atom goes to less hindered carbon

stereoselective

* B and H add at the same time to the same face of the alkene

Predict the major product.

- * what are we adding?
- * where are we adding it? (i.e., regiochemistry?)
- * what is stereochemistry?

- can add H₂O with Markovnikov or anti-Markovnikov regiochemistry
- no carbocation in mechanisms

More Sample Flashcards (Hydroboration-Oxidation of an Alkene)

provide the "?" answer on the back of each card

predict the product

transform problem

?
$$\frac{1) BH_3-THF}{2) H_2O_2, NaOH} \longrightarrow OH$$

retrosynthesis

IV. Addition of Br₂ and Br₂/H₂O (Klein 8.10)

8-9

Bromination: Anti-Addition of Br₂

- * trans product only (one Br up, one Br down)
- * described as a *stereospecific* reaction
- * Why *anti addition*? See mechanism! (two steps, via **bromonium ion** intermediate)

What is a bromonium ion?

Bromination Mechanism

Br₂/H₂O: Halohydrin formation addition of other nucleophiles to a bromonium ion

Halohydrin Formation: Mechanism

$$\begin{array}{c}
& Br_2 \\
& H_2O
\end{array}$$

Why this regiochemistry? Look at the bromonium ion intermediate:

Transition States:

VS.

Example: Predict the major product.

- * what are we adding?
- * where are we adding it?
- * what is stereochemistry?

+ enantiomer

+ enantiomer

D) + enantiomer

Features of catalytic hydrogenation:

- stereochemistry: syn addition gives cis H atoms
- this reaction needs a catalyst
- it is considered a reduction reaction
- it is an exothermic reaction (break π , form σ)

General process:

- alkene and hydrogen gas are adsorbed onto the metal surface
- metal delivers both hydrogen atoms to the same face of the alkene (syn addition)

Heterogeneous Catalysts Pd, Pt, Ni

 these metals do NOT dissolve in the solvent

Homogeneous Catalysts, such as RhCI[P(C₆H₅)₃]₃

- Organometallic catalysts dissolve in organic solvents
- contain transition metals (Rh, Ru, Ir) and various organic ligands
- generally more selective for unhindered alkenes (due to sterics)

 ΔH° Hydrogenation can be used as an indication of pi bond stability.

Predict the major product.

A. Epoxidation $\begin{array}{c|c} & & & \\ \hline \\ & & \\ \hline \\$

A. Epoxidation (Klein 8.10) *Skip opening of epoxides (anti-dihydroxylation) & SkillBuilder 8.7*

meta-chloroperoxybenzoic acid

a common RCO₃H

RCO₂H General mechanism (FYI)

$$\begin{array}{c|c} & & & \\ \hline \end{array}$$

B. Syn Dihydroxylation (Klein 8.11)

General mechanism (concerted via cyclic intermediate):

Consider ozone, O₃ Is it good or bad?

$$\begin{array}{c|c} & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\$$

Predict the major product(s).

SkillBuilder 8.8

Note: Radical Additions to Alkenes will be covered with Chapter 10 (skip for now).

CHM 3140 Organic Chemistry I, Cal Poly Pomona, Dr. Laurie S. Starkey Chapter 8 (Klein) Summary: Reactions of Alkenes

- I. Alkene & Alkyne Nomenclature (8.3, 9.2) SkillBuilder 9.1
- II. Electrophilic Additions (HBr, HCl) (8.1 8.5) **SkillBuilders 8.1, 8.2**
 - A) Markovnikov addition via carbocation
 - B) HBr/peroxides gives anti-Markovnikov, via radical mechanism (Ch. 10)
- III. Hydration (8.6 8.8)
 - A) H₂O, H₂SO₄ (H₃O⁺) Markovnikov addition of -H and -OH via carbocation **SkillBuilder 8.3**
 - B) Oxymercuration/Reduction
 - i) Hg(OAc)₂ followed by NaBH₄ to replace -Hg(OAc) with -H
 - ii) Markovnikov addition of -H and -OH
 - C) Hydroboration/Oxidation SkillBuilder 8.4
 - i) B₂H₆ followed by H₂O₂/NaOH to replace -B with -OH
 - ii) Anti-Markovnikov regiochemistry and syn addition (stereochemistry)
- IV. Bromination (Br₂) (8.10) **SkillBuilder 8.6**
 - A) anti addition via back-side attack on bromonium ion intermediate
 - B) Br₂/H₂O gives trans halohydrin with Markovnikov regiochemistry
- V. Hydrogenation (H₂) (8.9) **SkillBuilder 8.5**
 - A) syn addition of H–H (alkene \rightarrow alkane)
 - B) catalysts can be heterogeneous (Pd, Pt, Ni) or homogeneous (organometallic RhCl[PR₃]₃)
 - C) reduction of alkynes (9.5)
 - i) H₂/catalyst (Pd, Ni, Pt, RhCl[PR₃]₃) adds 2 equiv. to give alkane
 - ii) H₂/poisoned cat. (Lindlar's catalyst) adds 1 equiv. to give cis alkene
 - iii) Na/NH₃ (dissolving metal reduction of alkyne gives trans alkene)
- VI. Oxidations
 - A) epoxidation (using a peroxy acid: RCO₃H or mCPBA or H_2O_2)
 - i) syn addition of -O- to give oxirane/epoxide
 - ii) FYI: anti addition of two -OH groups if followed by H₃O⁺ (will cover in CHM 3150)
 - B) dihydroxylation (using KMnO₄ or OsO₄) (8.12)
 - i) syn addition of two -OH groups via cyclic intermediate
 - C) ozonolysis (break double bonds with O₃) (8.13) **SkillBuilder 8.8**
 - i) reductive workup (Zn/H₂O or Me₂S) gives aldehydes/ketones
- VII. Predicting the products (summary) SkillBuilder 8.9
 - A) What groups are being added?
 - B) Where are the groups being added? (regiochemistry, e.g., Markovnikov or anti-Mark.)
 - C) What is the stereochemistry? (e.g., syn or anti addition)
- VIII. Synthesis strategies
 - A) Planning a one-step synthesis **SkillBuilder 8.10**
 - B) Moving an OH/Br/Cl group SkillBuilder 8.11
 - i) Elimination, followed by addition
 - C) Moving a pi bond SkillBuilder 8.12
 - i) Addition, followed by elimination

SKIP: anti-dihydroxylation/epoxide ring openings (Section 8.11 and SkillBuilder 8.7)