Dr. Starkey, CHM 3140 Organic Chem. I, Cal Poly Pomona https://pollev.com/lauriestarke263 Chapter 7 Part 2 – Elimination Rxns (Ch 7 Worksheet #4)

For clicker question voting, go to: LAURIESTARKE263 to 37607

Which of the following is the FASTER reaction? Explain briefly.

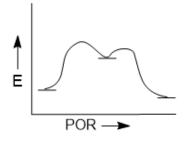
I
$$\longrightarrow$$
 Br $\xrightarrow{H_2O}$

C) I is faster because this is less stable:

substitution

D) I is faster because LG has less sterics

E) neither reaction is faster because the products are the same


E1 Mechanism

E1 Kinetics Rate = k[RBr]

follows Zaitsev / Hofmann rule: forms most substituted, most stable alkene

- a more stable carbocation will be formed faster (lower Ea) and gives slower / faster E1/S_N1

Rate (by RX type)

Which of the following is the LEAST likely to be isolated as a product in the reaction shown?

2

$$\begin{array}{c}
\text{OH} \\
\hline
\text{heat}
\end{array}$$

A)

B)

D)

3

4

Which would undergo the SLOWEST E1 mechanism?

A)

B)

C

D)

5

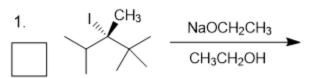
Predict the major product.

Substitution vs. Elimination (7.9)

Summarize what you know about each of the following mechanisms. (circle all that apply)

	S _N 2	S _N 1	E2	E1
bi/unimolecular?	bi / uni	bi / uni	bi / uni	bi / uni
one-step mech.?	yes / no	yes / no	yes / no	yes / no
need good LG?	yes / no	yes / no	yes / no	yes / no
need strong Nu:?	yes / no	yes / no	yes / no	yes / no
need strong base?	yes / no	yes / no	yes / no	yes / no
sterics important?	yes / no	yes / no	yes / no	yes / no
preferred LG type?	1º 2º 3º allylic	1° 2° 3° allylic	1° 2° 3° allylic	1º 2º 3º allylic
stereochemistry?				

stereochemistry?


other notes

Categorize the following species as a strong or weak nucleophile, AND as a strong or weak base.

NaOH	NH_3	MeOH	NaCN	iPrOH	NaOEt	NaNH ₂	PhNH ₂	0
ı⊖	tBuOK	NaSH	Ph ₃ P	H ₂ O	CH₃O [⊝]	$PhS^{\scriptsize{\bigcirc}}$	CH₃CH₂OH	CH₃ LO⊖
strong Nu	J.				strong base			
weak Nu	:				weak base			

Competing Substitution and Elimination Mechanisms

For each reaction, determine the mechanism and predict the major product(s). N.R. if no reaction.

