Elimination Reactions & Introduction to Alkenes - Chapter 7, part 2 (Klein)

Chapter Outline (Part 2)

I. Alkene structure & stability (7.6)

- II. Alkene synthesis: E2 elimination (7.5, 7.7) SkillBuilders 7.3, 7.4, 7.5
- III. Alkene synthesis: E1 elimination (7.8)
 - A) Dehydration of alcohols (7.10)
- IV. Substitution vs. Elimination (7.9) SkillBuilder 7.7
- V. Synthesis strategies (7.11) SkillBuilder 7.8
- I. Alkene structure (review)

3-D sketch: p orbitals are orthogonal to sp^2 plane

- π bonds are higher energy than σ bonds (more reactive, easier to break)
- π bonds are electron-rich (can react as a nucleophile or a base see Chapter 8)

Alkene stability (7.6)

- conjugation increases stability (resonance)

- increasing number of alkyl substituents increases stability

R R

R

R R R

R____

substituted

____substituted ____substituted

substituted

- trans is more stable than cis, except in rings

trans possible if ring is >7 carbons

cis (less stable) ****

trans (more stable)

cis only

- FYI π bond is unstable at bridgehead carbons (Bredt's rule)

Example: Which alkene is most stable? Least stable?

II. Alkene synthesis via E2 mechanism (7.5, 7.7)

- one-step mechanism
- needs strong base
- rate = k [RX] [base]

Example:

"eliminate" or lose β-hydrogen and LG (loss of HBr is called dehydrohalogenation)

Stereochemisty of E2 mechanism (7.7)

- β-hydrogen and LG must be anti-coplanar (180°) or anti-periplanar (close to 180°)
- E2 is called "anti elimination"

Example:

_____ is the major product because it is the most stable alkene (Zaitsev's Rule)

Effect of chair conformation on rate of E2 mechanism.

When a sterically hindered "bulky" base is used, then β -hydrogen on *less substituted* C is removed.

____ is the major product because it is formed fastest (Hofmann's Rule)

Example: predict the major E2 elimination product for each reaction.

When do they compete? Reactions involving HO⁻ (hydroxide) or RO⁻ (alkoxide).

Compare rates:

RBr	name	Туре	% S _N 2	% E2
CH₃Br				
∕ → Br				
Br				
> ─Br				
→ Br				

Consider t-BuBr:

t-Butoxide is a very <u>bulky</u> base (also Et₃N, iPr₂NH, DBU, DBN)

- not good for $S_N 2$
- classic E2 reaction conditions (gives Hofmann product if there is a choice)

Preference for E2 over S_N2 (by RX type):

^{**}Addition of heat also favors elimination (T∆S becomes large)**

b)
$$\sim$$
 Br \sim DMF

$$\begin{array}{c} \text{CH}_2\text{CI} \\ \hline \\ \text{CH}_3\text{CN} \end{array} \xrightarrow{}$$

$$\begin{array}{ccc} \text{h)} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ &$$

E1 Mechanism: 2 steps, via carbocation

1) loss of LG

(same slow, rate-determining step as S_N1)

2) loss of β -H

(follows Zaitsev's rule - forms most substituted, most stable alkene)

E1 Kinetics Rate = k[RCI]

- unimolecular
- rate not dependent on [H₂O] so H₂O is not involved in rate-determining step
- a more stable carbocation will be formed faster (lower E_a) and gives faster $E1/S_N1$

Rate (by RX type)

allyl / benzyl / 3° > 2° >> 1° methyl

Br, H, CH₃ NaOH
$$H_2O$$
 Δ H_2O Δ

Carbocation Rearrangements (6.11)

Because of rearrangements, product mixtures are common for reactions involving carbocations.

- 1) Of the elimination products shown below, which is expected to be major?
- 2) What mechanism accounts for the alcohol products? For the alkene products?
- 3) Provide detailed mechanisms to generate all products shown.

7-20

loss of _____ = dehydration

Mechanism? S_N1 S_N2 E1 E2

- produces most stable alkene possible (Zaitsev / Hofmann)
- carbocation can rearrange
- recall what is needed to make OH a good leaving group: _

$$H-A \equiv H-O-S-OH$$

$$A: \stackrel{\Theta}{=} \stackrel{\Theta}{=} \stackrel{O}{\circ} - \stackrel{\Pi}{\stackrel{\Pi}{\circ}} - OH$$

- HBr H₂SO₄
- strong / weak base- non-nucleophilic, so no S_N1 competition
- A⁻ is like a spectator ion (N/R)

Start building up a set of flashcards to study CHM 3140 reactions and organize material (essential in Chapter 8!!). From any new reaction we learn in class, you can create **THREE** flashcards:

starting reagent ?

starting material product

? reagent → product

predict the product

transform problem*

retrosynthesis*

Useful for preparing for final, reviewing material in CHM 3150 and *planning a synthesis.

Sample Flashcards (Reactions of Alcohols)

7-21

IV. Substitution vs. Elimination (7.9)

Bimolecular reactions (1-step mechanism)

S_N2 • requires good Nu: (X⁻, NH₃, RNH₂, CN⁻, N₃⁻, RO⁻, HO⁻)

• steric hinderance slows S_N2 : CH_3 (fastest) > 1° > 2° >> 3° (tertiary, slowest)

E2 • requires a strong base (RO⁻, HO⁻, NOT H₂O, ROH)

Unimolecular reactions (stepwise mechanism, via carbocation)

S_N1 and E1 • requires NO strong base/Nu: (usually H₂O, ROH – called solvolysis)

• more stable carbocation, faster reaction: benzyl/allyl, 3° > 2° >> 1°, methyl

V. Synthesis strategies (7.11)

Provide suitable starting materials to synthesize the following target molecules (TM).

Organic Chemistry I, CHM 3140, Dr. Laurie S. Starkey, Cal Poly Pomona Elimination Reactions & Alkenes Summary (Ch 7 Part 2)

- I. Review the pi (π) bond & Alkene stability (7.6)
 - i) more alkyl groups, more stable
 - ii) trans is more stable than cis (except in rings)
 - iii) pi bond unstable at bridgehead carbon (Bredt's Rule)
 - iv) alkene is more stable if conjugated with another pi bond (16.2)
- II. Alkene synthesis: E2 mechanism (one-step) (7.5, 7.7) SkillBuilders 7.3, 7.4, 7.5
 - i) requires strong base (HO⁻, RO⁻, R₂N⁻)
 - ii) stereochemistry: anti-elimination of β-hydrogen and LG
 - iii) regiochemistry: depends on base choice
 - a. usually gives the most stable alkene (Zaitsev with NaOH, MeONa, EtONa)
 - b. bulky base gives less substituted alkene (Hofmann with t-BuOK)
 - iv) often in competition with S_N2 (E2 favored unless primary RX)
- III. Alkene synthesis: E1 mechanism (7.8)
 - i) two steps, via carbocation (rearrangement can occur)
 - ii) proceeds with loss of stereochemistry (both E and Z alkenes formed; E favored)
 - iii) regiochemistry: gives the most stable alkene (Zaitsev)
 - iv) usually in competition with S_N1 (E1 favored with heat)
 - v) dehydration of alcohols (conc. H_3PO_4 or conc. H_2SO_4 + heat) (7.10)
- IV. Predicting Products: Substitution vs. Elimination (7.9) SkillBuilder 7.7
 - i) Bimolecular (strong base/nu:): S_N2 vs. E2 (see below)
 - ii) Unimolecular (carbocation): S_N1 vs. E1 (see below)
- V. Synthesis Strategies (7.11) SkillBuilder 7.9

Bimolecular reactions (1-step mechanism)

- S_N2 requires good Nu: (X⁻, NH₃, RNH₂, CN⁻, N₃⁻, RO⁻, HO⁻)
 - steric hinderance slows S_N2 : CH_3 (fastest) > 1° > 2° >> 3° (tertiary, slowest)
- requires a strong base (RO⁻, HO⁻, NOT H₂O, ROH)

Unimolecular reactions (stepwise mechanism, via carbocation)

S_N1 and E1 • requires NO strong base/Nu: (usually H₂O, ROH – called solvolysis)

• more stable carbocation, faster reaction: benzyl/allyl, 3° > 2° >> 1°, methyl

Alkyl Group (RX) 3° (tertiary)	S _N 1, E1, E2 common	S _N 2 rare
2° (secondary)	sometimes	sometimes
1° (primary)	rare	common
CH ₃ (methyl)	rare	common