Organic Chemistry I, CHM 3140 Dr. Laurie S. Starkey, Cal Poly Pomona

Alkyl Halides: Substitution Reactions - Chapter 7, part 1 (Klein 4th ed.)

Chapter Outline

- I. Intro to RX (7.1, 7.2)
- II. Substitution Reactions
 - A) S_N2 Mechanism (7.3)
 - B) S_N1 Mechanism (7.8)
 - C) Leaving Groups, LG (7.1, 7.10)
 - D) Nucleophiles, Nu: (6.6, 7.4)

- E) $S_N 2$ vs. $S_N 1$
- III. Competing Reactions
 - A) Carbocation Rearrangements (6.11)
 - B) Elimination Rxns (7.5-7.9) continued in Ch. 7 Part 2
- IV. Synthesis Strategies (7.11)
- V. Solvent Effects (7.12)

I. Introduction to Alkyl Halides, RX (7.1, 7.2)

Types of Halides, X = CI, Br, I (F = N/R in Ch. 7 - no substitution or elimination rxns with fluoride)

alkyl halide

- can be 1°, 2°, 3°, allylic, benzylic
- RBr, RCl can be prepared by freeradical halogenation (Chapter 10)

vinyl halide (on pi bond)

aryl halide (on benzene ring)

Reactivity of Alkyl Halides

Substitution (Ch. 7 Part 1) (replace X with Nu:) (Nu: = nucleophile)

Elimination (Ch. 7 Part 2) (-HX) (forms an alkene)

II. Substitution Reactions

Example:

$$H-O-CH_3$$

Nu:

E⁺

product

LG

Nucleophile (Nu:)

- electron-rich (lone pair or pi bond), often has negative charge
- seeks electron-deficient species

Electrophile (E^+)

- electron-poor (δ + or +)
- seeks electron-rich species

Why are Cl-, Br and I good LGs?

Leaving Group (LG)

- group leaves and takes 2 electrons with it
- stable groups (weak bases) make good LG's (e.g., X⁻, halide)

General Reaction:

General Reaction:

What are the possible mechanisms for this substitution reaction?

A) simultaneous (concerted)

B) stepwise (LG leaves first)

II. A) **S_N2 - Substitution Nucleophilic Bimolecular** (7.3)

Example:
$$CH_3O$$
 + CH_3CH_2 —I: ——

Mechanism: one step, backside attack

S_N2 Kinetics Rate = k [CH₃O⁻] [CH₃CH₂I]

- rate is dependant on both Nu: and E+

$$R-Br + \stackrel{\bigcirc}{CN} \longrightarrow R-CN + \stackrel{\bigcirc}{Br}$$

- bimolecular reaction

- sterics affect the rate of S_N2

consider tert-butyl bromide:

	R group	abbrev.	carbon type	relative rate
	CH ₃ —			
C	CH ₃ CH ₂ —			
(CH ₃ CH-			
C	CH ₃ CH ₃ —C—			
Cł	H ₃ -C-CH ₂ -			

Rate of S_N2 (by type of RX):

If LG carbon is too sterically hindered (e.g., 3°), then:

S_N2 Transition State Structure

$$CH_3O + H_{CH_3} + H$$

Transition State (TS) (high energy, partial bonds/charges)

What is the hybridization of the carbon in the transition state? sp⁴?!

Note: the presence of a neighboring (conjugated) p orbital would be good for the S_N 2 mechanism because TS would be stabilized e.g., allylic LG (next to a pi bond)

backside attack ---- inversion of stereochemistry

typical line drawing point of view:

LG is a wedge

- like a flipped umbrella
- can only be observed at a chiral center
- S_N2 usually changes configuration (*R* to *S* or *S* to *R*), because usually the LG and the Nu: are both #1 priority group

S_N2 Summary

Rate (by RX type)

- one-step mechanism

methyl > 1° > 2° >> 3°

- inversion of stereochemistry
- requires: 1) unhindered LG (on tetrahedral sp^3 carbon)
 - 2) good Nu: (negative charge or NH₃)

Predict the Major Product(s) (S_N2)

Include stereochemistry, where appropriate. Write N.R. if no reaction is expected.

II. B) $S_N 1$ - Substitution Nucleophilic Unimolecular (7.8)

7-5

Example: O
$$CH_3$$
 CH_3 $CH_$

Could this be an S_N2 mechanism?

Still a **substitution**, but a different mechanism (stepwise).

S_N1 Mechanism: two key steps (but usually three total steps)

Step 1

Loss of the leaving group

Step 2

Addition of nucleophile

 S_N1 Kinetics Rate = k [t-BuCl]

- rate-determining step involves E⁺ only (unimolecular reaction)
- rate is independent of [Nu:]
- a more stable carbocation will be formed faster

Rate of S_N1 (by type of RX):

S_N1 Energy vs. Progress of Reaction Diagram

Structure of first Transition State, TS-1

Structure of TS-2?

S_N1 results in **racemization** (loss of stereochemistry) due to the achiral carbocation intermediate.

CI H
$$(S_N 1)$$

Nal

acetone
(solvent)

S_N1 Summary

Rate (by RX type)

- stepwise mechanism via carbocation

benzyl/allyl/3° > 2° >> 1°, methyl

- more stable carbocation =
- racemization occurs
- requires: 1) stable carbocation (not 1° or methyl)
 - 2) weak Nu: (usually the solvent, H_2O or ROH, is the nucleophile = "solvolysis")

Solvolysis: S_N1 Mechanism is three steps

- Nu: is H₂O or ROH

Example:

- final deprotonation step required

$$-$$
 Br $-$ OCH₃ (+ HBr)

Predict the Major Product(s) ($S_N 2$ or $S_N 1$ mechanism? See 7.9)

Include stereochemistry, where appropriate. Write N.R. if no reaction is expected.

Which would be the faster reaction (A or B)? Explain. (Consider first: $S_N = S_N =$

$$A \longrightarrow Br \longrightarrow OH$$
 $Br \longrightarrow H_2O \longrightarrow OH$

II. C) Leaving Groups (7.1, 7.10)

- weak bases make good leaving groups
- more stable = less reactive, weaker base

Nal

typical leaving group? halide (X⁻)
 (all have strong conj. acids: HCl, HBr, HI)

Leaving groups

$$F^{\Theta}$$
 CI^{Θ} < Br^{Θ} < I^{Θ}

Is the Forward or Reverse reaction favored?

Best substitution reaction has best LG leaving (gives more stable products so $\Delta H < 0$ and $\Delta G < 0$)

1. Add a strong acid (acid protonates the alcohol to make a great LG, H₂O)

ROH + HCI/HBr/HI
$$\longrightarrow$$
 RCI/RBr/RI (+ H₂O)

CH₃OH⁺ NaCI \longrightarrow

CH₃OH⁺ HCI

mechanism:

2. Make a tosylate LG

$$CH_{3}OH \xrightarrow{TsCl} CH_{3}OTs \xrightarrow{Nu:} CH_{3}Nu + OTs$$

$$CH_{3}OH \xrightarrow{base} CH_{3}OH \xrightarrow{base} CH_{3}OH \xrightarrow{U:} CH_{3}OH$$

Synthesis/"Transform" Problem (7.11) - Provide the reagents needed to transform the given starting material into the desired product. More than one step may be required.

1. More electron-rich, better Nu:

CH₃OH₂

CH₃OH

CH₃O[⊖]

2. Periodic Trends:

across row:

decreasing nucleophilicity

 NH_3

 H_2O

down a family: generally increasing nucleophilicity (BUT this trend depends on solvent!)

Good Nucleophiles (Nu:)

 RO^{\bigodot} HS^{\bigodot} RS^{\bigodot} $\overset{\circleddash}{\bigcirc}$ CN N_3^{\bigodot} I^{\bigodot} Br^{\bigodot}

NH₃ NH₂R R₃P

Weak Nucleophiles (Nu:)

 H_2O ROH

Summary of Substitution Reactions

Alkyl Group	S _N 1	S _N 2
3° (tertiary)	common	rare (N/R)
2° (secondary)	sometimes	sometimes
1° (primary)	rare (N/R)	common
CH ₃ (methyl)	never (N/R)	common
allyl/benzyl	common	common (if not 3°)

S_N2 requires strong Nu: and minimal steric hindrance

S_N1 requires a stable carbocation and typically involves a weak Nu:

See page 6-7 for examples, and $S_N 2/S_N 1$ Predict the Product homework for practice problems. After attempting the homework, let's look more closely at the following problems:

III. A) Competing Reactions: Carbocation Rearrangements (6.11)

Alkyl groups can also shift

7-11

Both $S_N 1$ and $S_N 2$ reactions need **POLAR** solvents to stabilize charges in the mechanism.

Protic

- has an OH group
- extremely polar
- strongly stabilizes charges

Aprotic

- has no OH group

Solvent Effects on Reaction Rates

if you INCREASE solvent polarity, then $S_N 1$ is _____ and $S_N 2$ is _____

e.g. using a protic solvent instead of an aprotic solvent

e.g. going from an 80:20, EtOH:H₂O solvent to 50:50

Why is a more polar solvent GOOD for an S_N1 mechanism? (speeds it up)

- carbocation will be better stabilized by more polar solvent
- C+ intermediate and transition state are more stable/lower E
- E_a (lower height of hill), rate of reaction

- S_N1 is FASTER in a more polar solvent

Why is a more polar solvent BAD for an S_N2 mechanism? (slows it down)

- nucleophile will be better stabilized by more polar solvent
- Nu: is more stable, less reactive
- E_a (increased height of hill), rate of reaction
- S_N2 is SLOWER in a more polar solvent

All Substitution and Elimination reactions need Electrophiles with good leaving groups (LG), such as Cl⁻, Br⁻, I⁻, and TsO⁻. Substitution reactions need Nucleophiles (S_N2 needs a good Nu:; S_N1 needs a weak Nu:) and Elimination reactions need Bases (E2 needs strong base; E1 needs weak base).

Poor Leaving Groups (LG)

 H_2N^{\ominus} RO^{\ominus} HO^{\ominus} Θ_{CN} N_3^{\ominus} F^{\ominus}

Good Nucleophiles (Nu:)

$$HO^{\ominus}$$
 RO^{\ominus} HS^{\ominus} RS^{\ominus} HS^{\ominus} RS^{\ominus} HS^{\ominus} H

 $:NH_3$ $:NH_2R$ R_3P :

Weak Nucleophiles (Nu:)

 H_2O ROH (these are also weak bases)

Strong Bases (B:)

 H_2N^{Θ} RO $^{\Theta}$ HO $^{\Theta}$ (needed for E2)

increasing ionizing power (increasing solvent polarity)