CHM 3140 Organic Chemistry I, Dr. Laurie S. Starkey, Cal Poly Pomona Acid-Base Reactions: Proton Transfers - Chapter 3 (Klein) - 1) Definitions (Sections 3.1, 3.2, 3.10) - 2) Factors affecting acidity (Sections 3.4, 3.5, "ARIO") - a) Periodic Trends (Atom) - b) Inductive Effects (Induction) - c) Resonance Effects (*Resonance*) - 3) Comparing strengths of bases (Sections 3.6, 3.9) - 4) Common Acids and Bases, K_a and pK_a (Section 3.3) Skip Sections 3.7 and 3.8 Skip SkillBuilders 3.8, 3.12, 3.13 Note: **curved arrows** show the flow of electrons to **form bonds** and **break bonds** – this is described as the "mechanism" of the reaction (Klein Section 3.2) ### 1) Definitions: acids and bases can be defined by Lewis (3.9) or Bronsted-Lowry (3.1) theories **Lewis Acid**: electron-pair acceptor (also called an **Electrophile**, **E**⁺) * has a vacancy * common Lewis acids: AICI₃ BF₃ Lewis Base: electron-pair donor (also called an Nucleophile, Nu:) * has a lone pair or a pi bond examples: FYI: SkillBuilder 3.12 (Lewis acids/bases is not the focus of this chapter!) We will study Nucleophiles and Electrophiles in Chapter 7. # "Acid-Base" reaction usually means Bronsted-Lowry type **Acid:** H[⊕] (proton) donor **Base:** H[⊕] (proton) acceptor (Bronsted-Lowry definitions) A general "proton-transfer" reaction Two acids are in competition - forward and reverse reactions are in **equilibrium**. **Equilibrium lies in the direction of the _____ acid/base pair ** Which is the stronger acid? Use pK_a table (see Table 3.1) or predict... Predict the products, label them (conj. acid, conj. base) and predict direction of equilibrium: $$H - O - H + NH_3$$ acid base acid conj. acid pK_a 16 compare these acids: CH_4 NH_3 H_2O pK_a 50 38 16 why such a large difference in pK_a ? Look at conjugate bases! draw the conj. bases: Conclusion: the stronger acid is the one with the most stable (less reactive, weaker) conjugate base! # 2a) Periodic Trends for Acidity: "Atom" (down column/family) compare these acids: HF HCI HBr HI pK_a 3 -7 -9 -10 why such a large difference in pK_a ? Look at conjugate bases! draw the conj. bases: Which is the stronger acid (i.e., which is the more acidic proton, H_A or H_B)? draw the conj. bases: F is an electron-withdrawing group (EWG) Other EWG: $$- \times - \times - \times = -$$ Inductive effects decrease with distance (more bonds to travel through) VS. **II**, p*K*_a 5 **▼** **I**, p*K*_a 16 CB-I CB-II **II** is 100,000,000,000 (100 **BILLION**) times more acidic than I!! Why?! Compare conj. bases! Example: Which is most acidic? Least acidic? ### 3) Comparing strengths of bases (3.6, 3.7) Example: Which is more basic (stronger base)? CH₃OH CF₃OH 1 Ш Example: Which is most basic (strongest base)? CH₃CH₂NH₂ Ī # try SkillBuilders 3.3, 3.9, 3.10, 3.11 FYI: bulky bases aren't well-stabilized by solvent molecules, so they are stronger than smaller bases (therefore, bulky acids like t-butanol are harder to deprotonate/less acidic) (Klein 3.7) 4) Common Acids and Bases see p K_a Table 3.1 strong acids $pK_a < 0$ weak acids $0 < pK_a < 16$ very weak acids $pK_a > 16$ extremely weak acids (not acids!) pK_a > 40 Using a pK_a table to predict direction of equilibrium $$NH_3 + H_3O^{\bigoplus}$$ 36 -2 # Acid Dissociation Constant, K_a , and pK_a are measures of acid strength (3.3) HA + H₂O A[⊖] + H₃O[⊕] if HA is a STRONG acid if HA is a WEAK acid $K_{\rm a}$ is the acid dissociation constant $$K_{a} = \frac{[H_{3}O^{+}][A^{-}]}{[HA]}$$ since K_a is often VERY large or VERY small, it's easier to work with p K_a $$pK_a = -log(K_a)$$ $K_{\rm eq}$ is the equilibrium constant $$K_{\text{eq}} = \frac{[\text{products}]}{[\text{reactants}]}$$ if K_a is a LARGE number (>1), then the acid is stronger weaker if an acid is stronger, then the p K_a is higher lower for example, sulfuric acid (H_2SO_4) has a K_a of ~1.6 x 10⁵ and a pK_a of -5.2 acetic acid (CH_3CO_2H) has a K_a of 1.8 x 10⁻⁵ and a p K_a of 4.75 - I. Definitions (Sections 3.1, 3.2) SkillBuilder 3.1 - a. Lewis acid/base (3.10, e- pair acceptor/donor, Electrophile/Nucleophile) - b. Bronsted-Lowry acid/base (proton, H+, donor/acceptor) - c. curved arrows to show reaction mechanisms #### How can we predict relative strengths or acids and bases? (Sections 3.4, 3.5) - II. Periodic trends in acid strength (ARIO: Atom) SkillBuilder 3.5 - a. ROH > R₃CH and HI > HCl. Why? Compare conjugate bases... - b. The stronger acid has the more stable (weaker) conjugate base! - III. Inductive effects on acid strength (ARIO: Induction) SkillBuilder 3.7 - a. electron-withdrawing groups (EWG) stabilize negative charges - b. inductive effects decrease with distance - IV. Effect of resonance (ARIO: Resonance) SkillBuilder 3.6 - a. acid strength: resonance can stabilize a conjugate base - b. base strength: resonance can tie up and stabilize a lone pair - V. Common acids (see pK_a Table 3.1) SkillBuilders 3.2, 3.3, 3.4 - a. use pK_a table to identify strong/weak/very weak acids (Section 3.3) - b. determine direction of equilibrium (Section 3.6), with or without pK_a table skip: ARIO-Orbital (skip SkillBuilder 3.8), 3.7 Leveling effect, 3.8 Solvating effect . # Suggested textbook problems (4th edition) 1-64, but skip 21, 22, 23dg, 24d, 30f, 32-36, 46c, 47d, 49a, 50, 51ac, 64c.