CHM 3140 Organic Chemistry I, Dr. Laurie S. Starkey, Cal Poly Pomona Acid-Base Reactions: Proton Transfers - Chapter 3 (Klein)

- 1) Definitions (Sections 3.1, 3.2, 3.10)
- 2) Factors affecting acidity (Sections 3.4, 3.5, "ARIO")
 - a) Periodic Trends (Atom)
 - b) Inductive Effects (Induction)
 - c) Resonance Effects (*Resonance*)
- 3) Comparing strengths of bases (Sections 3.6, 3.9)
- 4) Common Acids and Bases, K_a and pK_a (Section 3.3)

Skip Sections 3.7 and 3.8

Skip SkillBuilders 3.8, 3.12, 3.13

Note: **curved arrows** show the flow of electrons to **form bonds** and **break bonds** – this is described as the "mechanism" of the reaction (Klein Section 3.2)

1) Definitions: acids and bases can be defined by Lewis (3.9) or Bronsted-Lowry (3.1) theories

Lewis Acid: electron-pair acceptor (also called an **Electrophile**, **E**⁺)

* has a vacancy

* common Lewis acids: AICI₃ BF₃

Lewis Base: electron-pair donor (also called an Nucleophile, Nu:)

* has a lone pair or a pi bond

examples:

FYI: SkillBuilder 3.12 (Lewis acids/bases is not the focus of this chapter!) We will study Nucleophiles and Electrophiles in Chapter 7.

"Acid-Base" reaction usually means Bronsted-Lowry type

Acid: H[⊕] (proton) donor

Base: H[⊕] (proton) acceptor

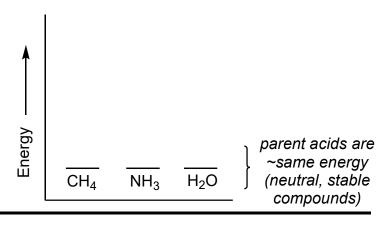
(Bronsted-Lowry definitions)

A general "proton-transfer" reaction

Two acids are in competition - forward and reverse reactions are in **equilibrium**.

**Equilibrium lies in the direction of the _____ acid/base pair ** Which is the stronger acid? Use pK_a table (see Table 3.1) or predict...

Predict the products, label them (conj. acid, conj. base) and predict direction of equilibrium:


$$H - O - H + NH_3$$
 acid base acid conj. acid pK_a 16

compare these acids: CH_4 NH_3 H_2O pK_a 50 38 16

why such a large difference in pK_a ? Look at conjugate bases!

draw the conj. bases:

Conclusion: the stronger acid is the one with the most stable (less reactive, weaker) conjugate base!

2a) Periodic Trends for Acidity: "Atom" (down column/family)

compare these acids: HF HCI HBr HI pK_a 3 -7 -9 -10

why such a large difference in pK_a ? Look at conjugate bases!

draw the conj. bases:

Which is the stronger acid (i.e., which is the more acidic proton, H_A or H_B)?

draw the conj. bases:

F is an electron-withdrawing group (EWG) Other EWG:

$$- \times - \times - \times = -$$

Inductive effects decrease with distance (more bonds to travel through)

VS.

II, p*K*_a 5 **▼**

I, p*K*_a 16

CB-I

CB-II

II is 100,000,000,000 (100 **BILLION**) times more acidic than I!! Why?!

Compare conj. bases!

Example: Which is most acidic? Least acidic?

3) Comparing strengths of bases (3.6, 3.7)

Example: Which is more basic (stronger base)?

CH₃OH CF₃OH

1

Ш

Example: Which is most basic (strongest base)?

CH₃CH₂NH₂

Ī

try SkillBuilders 3.3, 3.9, 3.10, 3.11

FYI: bulky bases aren't well-stabilized by solvent molecules, so they are stronger than smaller bases (therefore, bulky acids like t-butanol are harder to deprotonate/less acidic) (Klein 3.7)

4) Common Acids and Bases

see p K_a Table 3.1

strong acids $pK_a < 0$

weak acids $0 < pK_a < 16$

very weak acids $pK_a > 16$

extremely weak acids (not acids!) pK_a > 40

Using a pK_a table to predict direction of equilibrium

$$NH_3 + H_3O^{\bigoplus}$$
36 -2

Acid Dissociation Constant, K_a , and pK_a are measures of acid strength (3.3)

HA + H₂O

A[⊖] +

H₃O[⊕]

if HA is a STRONG acid

if HA is a WEAK acid

 $K_{\rm a}$ is the acid dissociation constant

$$K_{a} = \frac{[H_{3}O^{+}][A^{-}]}{[HA]}$$

since K_a is often VERY large or VERY small, it's easier to work with p K_a

$$pK_a = -log(K_a)$$

 $K_{\rm eq}$ is the equilibrium constant

$$K_{\text{eq}} = \frac{[\text{products}]}{[\text{reactants}]}$$

if K_a is a LARGE number (>1), then the acid is stronger weaker if an acid is stronger, then the p K_a is higher lower

for example, sulfuric acid (H_2SO_4) has a K_a of ~1.6 x 10⁵ and a pK_a of -5.2 acetic acid (CH_3CO_2H) has a K_a of 1.8 x 10⁻⁵ and a p K_a of 4.75

- I. Definitions (Sections 3.1, 3.2) SkillBuilder 3.1
 - a. Lewis acid/base (3.10, e- pair acceptor/donor, Electrophile/Nucleophile)
 - b. Bronsted-Lowry acid/base (proton, H+, donor/acceptor)
 - c. curved arrows to show reaction mechanisms

How can we predict relative strengths or acids and bases? (Sections 3.4, 3.5)

- II. Periodic trends in acid strength (ARIO: Atom) SkillBuilder 3.5
 - a. ROH > R₃CH and HI > HCl. Why? Compare conjugate bases...
 - b. The stronger acid has the more stable (weaker) conjugate base!
- III. Inductive effects on acid strength (ARIO: Induction) SkillBuilder 3.7
 - a. electron-withdrawing groups (EWG) stabilize negative charges
 - b. inductive effects decrease with distance
- IV. Effect of resonance (ARIO: Resonance) SkillBuilder 3.6
 - a. acid strength: resonance can stabilize a conjugate base
 - b. base strength: resonance can tie up and stabilize a lone pair
- V. Common acids (see pK_a Table 3.1) SkillBuilders 3.2, 3.3, 3.4
 - a. use pK_a table to identify strong/weak/very weak acids (Section 3.3)
 - b. determine direction of equilibrium (Section 3.6), with or without pK_a table

skip: ARIO-Orbital (skip SkillBuilder 3.8), 3.7 Leveling effect, 3.8 Solvating effect .

Suggested textbook problems (4th edition)

1-64, but skip 21, 22, 23dg, 24d, 30f, 32-36, 46c, 47d, 49a, 50, 51ac, 64c.