Organic Chemistry I, CHM 3140 Dr. Laurie S. Starkey, Cal Poly Pomona Chapter 1 General Chemistry Review, Part 1 – Practice Problems

What is the **second-most** electronegative element?

hydrogen 1																	helium 2 He	
1.0079 lithium	beryllium	i	-			- 4.		-					boron	carbon	nitrogen	oxygen	fluorine	4.0026 neon
Li	Be												B	ć	N	o	F	Ne
6,941 sodium 11	9.0122 magnesium 12	<u></u>													14.007 phosphorus 15	15.999 sulfur 16	18.998 chlorine 17	20.180 argon 18
Na 22,990	Mg														P 30.974	S 32.065	CI 35,453	Ar 39.948
potassium 19	caldium 20		scandium 21	stanium 22	vanadium 23	chromium 24	manganese 25	26	cobalt 27	nickel 28	copper 29	30	26,982 gallium 31	28.096 germanium 32	arsenic 33	selenium 34	tromine 35	krypton 36
X 39.098	Ca 40.078		Sc 44.966	Ti 47.867	V 50,942	Cr 51.996	Mn 54,938	Fe 55,845	Co 58,933	Ni 58.693	Cu 63.546	Zn 65.39	Ga 69.723	Ge 72.61	As 74.922	Se 78.96	Br 79.904	Kr 83.80
rubidium 37	strontium 38		yttrium 39	zirconium 40	niobium 41	molybdenum 42	technetium 43	ruthenium 44	modium 45	palladium 46	silver 47	cadmium 48	49	50	antimony 51	tellurium 52	53	senon 54
Rb	Sr 87.62		Y 88.906	Zr 91,224	Nb	Mo	Tc	Ru	Rh	Pd 106.42	Ag	Cd	In 114.82	Sn	Sb 121.76	Te	126.90	Xe
caesium 55	barium 56	57-70	lutetium 71	hafnium 72	tantalum 73	tungsten 74	rhenium 75	osmium 76	iridium 77	platinum 78	gold 79	mercury 80	thallium 81	lead 82	bismuth 83	polonium 84	astatine 85	radon 86
Cs	Ba	*	Lu	Hf 178.49	Ta	W 183.84	Re	Os	lr 192.22	Pt	Au	Hg	TI 201.38	Pb	Bi	Po	At	Rn
francium 87	radium 88	89-102	lawrencium 103	rutherfordium 104	dubnium 105	seaborgium 106	bohrium 107	hassium 108	meitnerium 109	ununnilium 110	unununium 111	ununbium 112	204.35	ununquadum 114	200.90	[200]	prior	[222]
Fr	Ra	* *	Lr	Rf	Db	Sg	Bh	Hs	Mt	Uun	Uuu	Uub		Uuq				

For each pair of atoms, describe the type of bond that is expected to form between them.

LiBr

CH

NH

For each element below, attach as many H atoms as necessary to give a stable, neutral molecule.

Which of the following represents a pair of constitutional isomers?

1.

H₂O

and

H₃O⁺

C

II. CH₃ CH₃ CH₃

and CH₃CH₂CH₂NH₂

N

III.

Br

and

∕ Br

O

Br

5

6

Draw the Lewis structure of the following 7

CCI₃CO₂CH₂CH₃

Drawing Lewis Structures (Klein 1.3)

- 1) draw skeleton connectivity
- 2) count total # of valence electrons (valence e = group no.)
- 3) subtract charge (if any)
- 4) fill in missing electrons (fill octets)
- 5) determine formal charges (if any)

8

Add any missing formal charges in the following Lewis structures:

Formal Charges (Klein 1.4)

- · determine "electron count"
- = all nonbonded + 1/2 bonded/shared
- · compare "electron count" with valence missing an electron → + charge extra electron → - charge