Organic Chemistry I, CHM 3140 Dr. Laurie S. Starkey, Cal Poly Pomona Chapter 1 General Chemistry Review, Part 1 – Practice Problems What is the **second-most** electronegative element? | hydrogen
1 | | | | | | | | | | | | | | | | | helium
2
He | | |-----------------------|---------------------------|---------|-------------------|----------------------|----------------|-------------------|------------------|-----------------|-------------------|-------------------|------------------|-----------------|-------------------------|---------------------------|----------------------------|------------------------|--------------------------|-----------------------| | 1.0079
lithium | beryllium | i | - | | | - 4. | | - | | | | | boron | carbon | nitrogen | oxygen | fluorine | 4.0026
neon | | Li | Be | | | | | | | | | | | | B | ć | N | o | F | Ne | | 6,941
sodium
11 | 9.0122
magnesium
12 | <u></u> | | | | | | | | | | | | | 14.007
phosphorus
15 | 15.999
sulfur
16 | 18.998
chlorine
17 | 20.180
argon
18 | | Na
22,990 | Mg | | | | | | | | | | | | | | P
30.974 | S
32.065 | CI
35,453 | Ar
39.948 | | potassium
19 | caldium
20 | | scandium
21 | stanium
22 | vanadium
23 | chromium
24 | manganese
25 | 26 | cobalt
27 | nickel
28 | copper
29 | 30 | 26,982
gallium
31 | 28.096
germanium
32 | arsenic
33 | selenium
34 | tromine
35 | krypton
36 | | X
39.098 | Ca
40.078 | | Sc
44.966 | Ti
47.867 | V
50,942 | Cr
51.996 | Mn
54,938 | Fe
55,845 | Co
58,933 | Ni
58.693 | Cu
63.546 | Zn
65.39 | Ga
69.723 | Ge
72.61 | As
74.922 | Se
78.96 | Br
79.904 | Kr
83.80 | | rubidium
37 | strontium
38 | | yttrium
39 | zirconium
40 | niobium
41 | molybdenum
42 | technetium
43 | ruthenium
44 | modium
45 | palladium
46 | silver
47 | cadmium
48 | 49 | 50 | antimony
51 | tellurium
52 | 53 | senon
54 | | Rb | Sr
87.62 | | Y
88.906 | Zr
91,224 | Nb | Mo | Tc | Ru | Rh | Pd
106.42 | Ag | Cd | In
114.82 | Sn | Sb
121.76 | Te | 126.90 | Xe | | caesium
55 | barium
56 | 57-70 | lutetium
71 | hafnium
72 | tantalum
73 | tungsten
74 | rhenium
75 | osmium
76 | iridium
77 | platinum
78 | gold
79 | mercury
80 | thallium
81 | lead
82 | bismuth
83 | polonium
84 | astatine
85 | radon
86 | | Cs | Ba | * | Lu | Hf
178.49 | Ta | W
183.84 | Re | Os | lr
192.22 | Pt | Au | Hg | TI
201.38 | Pb | Bi | Po | At | Rn | | francium
87 | radium
88 | 89-102 | lawrencium
103 | rutherfordium
104 | dubnium
105 | seaborgium
106 | bohrium
107 | hassium
108 | meitnerium
109 | ununnilium
110 | unununium
111 | ununbium
112 | 204.35 | ununquadum
114 | 200.90 | [200] | prior | [222] | | Fr | Ra | * * | Lr | Rf | Db | Sg | Bh | Hs | Mt | Uun | Uuu | Uub | | Uuq | | | | | For each pair of atoms, describe the type of bond that is expected to form between them. LiBr CH NH For each element below, attach as many H atoms as necessary to give a stable, neutral molecule. Which of the following represents a pair of constitutional isomers? 1. H₂O and H₃O⁺ C II. CH₃ CH₃ CH₃ and CH₃CH₂CH₂NH₂ N III. Br and ∕ Br O Br 5 6 Draw the Lewis structure of the following 7 CCI₃CO₂CH₂CH₃ ## Drawing Lewis Structures (Klein 1.3) - 1) draw skeleton connectivity - 2) count total # of valence electrons (valence e = group no.) - 3) subtract charge (if any) - 4) fill in missing electrons (fill octets) - 5) determine formal charges (if any) 8 Add any missing formal charges in the following Lewis structures: Formal Charges (Klein 1.4) - · determine "electron count" - = all nonbonded + 1/2 bonded/shared - · compare "electron count" with valence missing an electron → + charge extra electron → - charge