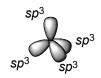
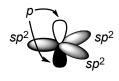
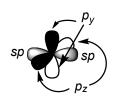

California State Polytechnic University, Pomona


Organic Chemistry I, CHM 3140, Dr. Laurie S. Starkey


Ch. 1 Summary (Klein 4th edition) Chemistry Review & Intro to Organic Molecules


- I. Review of General Chemistry concepts (1.1 1.8)
 - A) atomic structure; energy of atomic orbitals (s, p)
 - B) electronegativity ability of an atom to attract electron density
 - i) fluorine is most electronegative element (oxygen is second-most!), periodic trends
 - ii) $C \approx H$ electronegativity, N = Cl electronegativity
 - C) a filled valence shell (full octet) imparts stability
 - D) covalent vs. ionic bonds
 - E) bond polarity (δ + and δ –) *SkillBuilder 1.4*
- II. Reading Line Drawings (1.6) SkillBuilder 1.5
- III. Lewis Structures (1.3, 1.4) SkillBuilder 1.2
 - A) structures show σ , π and nonbonded electrons
 - B) formal charges (1.4) SkillBuilder 1.3
 - C) recognize "typical" configurations for common atoms (H, C, N, O, X)
- IV. Atomic Orbitals (AO's) combine to give Molecular Orbitals (MO's) (1.7 1.9)
 - A) Bonding MO's (σ, π) contain electrons in covalent bonds
 - B) Antibonding MO's (σ^*, π^*) are usually empty, can contain excited electrons
 - C) Relative energies, stabilities of MO's
- V. Hybrid Orbitals (1.10) and Shape/Geometry (1.11) SkillBuilders 1.7, 1.8
 - A) sp^3 hybridization: 4 regions of electron density, tetrahedral geometry
 - B) sp^2 hybridization: 3 regions of electron density, trigonal planar geometry, contains an unhybridized p orbital
 - C) *sp* hybridization: 2 regions of electron density, linear geometry, contains two unhybridized *p* orbitals
- VI. 3-D sketches (2.6)
 - A) determine hybridization to learn geometry about each atom
 - B) draw aligned p orbitals to show π bonds
- VII. Molecular Polarity (1.12) & Physical Properties (1.13, 1.14) SkillBuilders 1.9, 1.10
 - A) Nonbonding (intermolecular) Interactions affect bp, mp
 - i) dipole-dipole for polar molecules (δ +, δ -)
 - ii) hydrogen bonding for molecules containing NH, OH or HF (STRONG dipole)
 - iii) van der Waals (London dispersion) temporary dipole moments
 - a) explains why bp varies by MW (higher MW, higher bp)
 - b) straight vs. branched molecules (greater surface area, higher bp)
 - B) mp increases for molecules that can pack tighter (more spherical, higher mp)
 - C) water solubility increases with polarity, hydrogen-bonding ability
- VIII. Isomerism (1.2) SkillBuilder 1.1
 - A) structural (constitutional): same molecular formula, different connectivity
 - B) cis-trans (stereoisomers): structures vary only by orientation in space

Hybridization

