Organic (living things, chemistry of carbon)

Inorganic (rocks, minerals, metals, glass)

Examples of Organic Compounds:

<u>Products</u>
medicine
pesticides
dye/paint/ink
gasoline/fuels
cosmetics

Materials
paper
cotton
tires/rubber
nylon/polyester
plastic/vinyl

in Nature
hormones/steroids
DNA
protein/fats/sugars
flavors/fragrances
molecular bio. = organic rxns

PERIODIC TABLE OF ELEMENTS

Review Some Chemistry Basics (Klein 1-1 to 1-8) electronic configurations and the Periodic Table

- electrons (e⁻) are held in atomic orbitals around the nucleus (s, p, d, f), and s orbitals are more stable (lower Energy) than p orbitals
- fluorine is the <u>most electronegative</u> element (pulls electron density toward itself)
 Which is more electronegative: C or N ?
- oxygen is the <u>second-most electronegative</u> element and C

 H (no significant difference)
- all elements want to "look like" the Noble gases (have same electronic configuration) atom is stable if it has a filled valence shell

Periodic trends for electronegativity:

F

Examples: Na⁺ Ca²⁺ Br⁻ 8 e⁻ = s^2p^6 (or $1s^2$ for He) ionic bonds are formed between atoms if they have a large difference in electronegativities 1-2

covalent bonds are formed between atoms if they have similar electronegativities

*Note: carbon needs FOUR electrons to fill its octet, so it typically forms FOUR bonds!

POLAR covalent bonds arise if there is a difference in electronegativities between atoms (Klein 1.5)

polarity of molecule depends on geometry (Klein 1.12, and more on geometry later...)

o=c=o nonpolar	linear molecule: equal and opposite polar bonds, no net dipole moment				
CH ₃ OCH ₃	bent molecule: has a net dipole moment				
CH ₃ CH ₂ CH ₃	no polar bonds: no net dipole possible (regardless of geometry)				
⊕ ⊝ Na O−H (NaOH) ionic	ionic: full charges are the ultimate in polarity hydroxide (OH ⁻) is called a covalent ion NaOH has both ionic and covalent bonds				

line drawings (Klein 1.6) are a short-hand way to draw carbon structures

- end points and intersections represent C atoms
- omit H's attached to C's

which is which?

one cleans your face one is for fish & chips one is a fuel

$$\rightarrow$$
OH \equiv CH₃ \rightarrow CH-OH

$$\begin{array}{cccc} O & & & O & \\ & & & & & \\ OH & & & & CH_3 & OH \\ & & & & CH_3CO_2H & \\ & & & & & \\ \end{array}$$

Try SkillBuilder 1.5

Isomerism (Klein 1.2) Isomers are different compounds that have the same molecular formula.

Constitutional (Structural) Isomers: same formula, different connectivity

Stereoisomers: same formula AND same connectivity, but different spatial arrangement (3D)

Drawing Lewis Structures (Klein 1.3, 1.4)

example CICH₂CN

Drawing Lewis Structures (DK 1.3)

- 1) draw skeleton connectivity
- 2) count total # of valence electrons (valence e⁻ = group no.)
- 3) subtract charge (if any)
- 4) fill in missing electrons (fill octets)
- 5) determine formal charges (if any)

example CH₃OH₂⁺

Formal Charges (DK 1.4)

- · calculate for each atom
- determine "electron count"= all nonbonded + 1/2 bonded/shared
- compare "electron count" with valence

missing an electron —> + charge extra electron —> - charge

Typical, stable bonding (know by inspection)									
Atom	example	# bonds*	# lone pairs	"e ⁻ count"					
Н					*monovalent				
С					*tetravalent				
N					*trivalent				
0					*divalent				
X					*monovalent				

Atomic Orbitals (AO)

- a region with a high probability of finding electron (e⁻) density
- defined by mathematical equations called wave functions
- mathematical sign of the wave function changes at a "node"
- electron density = 0 at any node

Molecular Orbitals (MO)

- formed by overlap of Atomic Orbitals (AO) to make covalent bonds
- **TWO** AO's combine to give **TWO** MO's (there are **TWO** possible combinations)

Example 1 Consider the formation of the sigma bond in H_2 by combining two H atoms:

Example 2 Consider the formation of a pi bond, by overlapping two p orbitals

most stable, strongest

bond, least reactive

Energy

FYI: Electronic Transitions (Klein 16.11, 16.12, UV-Vis Spectroscopy & Color)

if...increase \uparrow # of conjugated pi bonds then...increase \uparrow resonance stabilization and...decrease \downarrow E needed for $\pi \to \pi^*$

lower Energy visible light is absorbed i.e., COLOR!

1-6

Lycopene (red plants - tomatoes) HO₃S Red #40 (artificial color)

Hybridization (Klein 1.10)

How are the bonds in methane, CH₄, formed?

carbon's atomic orbitals (AOs) contain _____ valence electrons

But CH₄ has four identical bonds. How can that be?

mixing of AOs to give new hybrid orbitals

type of hybridization (sp, sp^2 , sp^3) depends on the number of groups around the carbon "regions of electron density"

Example molecule	Regions of e ⁻ density	Hybrid- ization	s	р	p	p	Result	Geometry (VSEPR)
H H C C H H								
HC=C H								
н—с≡с—н								

practice: assign hybridizations on given molecule

- 1) complete Lewis structure
- 2) hybridization is for each atom
- 3) count "regions" on each atom
 - a "region of electron density" is a lone pair or single bond or double bond or triple bond

For the indicated bonds, describe the type of bond and determine which orbitals overlap to form them.

3-D Sketches of Molecules (see Klein 2.6)

$$CH_3$$
— CH_3

note: can rotate about σ bond (many drawings are possible)

$$CH_2 = CH_2$$

note: CANNOT rotate about π bond (aligned p orbitals)

practice: provide 3D sketch of given molecule

- 1) complete Lewis structure
- 2) assign atom hybridizations
- 3) sketch with maximum number of atoms in the plane of the page

Physical Properties (Klein 1.12, 1.13)

Physical properties, such as water solubility and boiling point (bp) are based on intermolecular forces/attractions.

if CH₃

molecules are strongly attracted to one another, then:

- requires a lot of energy to separate them from each other
- will have a high / low boiling point

Types of "nonbonding" interactions

Molecular Workbench Interactives http://mw.concord.org/nextgen/

A Dipole-Dipole

B Hydrogen Bonding

C van der Waals/London Dispersion

a polar molecule:

B Hydrogen Bonding - strongest possible dipole-dipole attraction due to H on N or O

H-N

н—о

both are extremely polar bonds, can cause H-bond formation

hydrogen-bonding in water:

Demonstrate hydrogen-bonding in DNA base pairs:

cytosine (C)

 H_2O bp °C 100

CH₃CH₂OH 78

CH₃OCH₃

CH₃CH₂CH₃
-42

clicker question: arrange the following compounds by INCREASING boiling point (from lowest to highest)

CH₃CH₂OH

I

CH₂=CH-CH₃

Π

O || H—C—CH₃

III

C Van der Waals/London Dispersion Forces - induced (temporary) dipoles

1-10

- present between all molecules, but for nonpolar molecules, this is the only attractive force

temporary attraction because of uneven distribution of electrons

- the greater the surface area, the greater the VDW/London forces (think "Velcro")

- the higher the MW, the higher the bp (if all polarity is equal)

CH₃CH₂CH₂CH₂CH₃ bp 36°C

straight-chain

VS.

branched

to predict boiling points

- 1) H-bonding (OH or NH)
- 2) polar vs. nonpolar
- 3) ↑ MW, ↑ bp
- 4) branching (least important!)

Try SkillBuilders 1.9, 1.10

OH

Water Solubility (Klein 1.14)

- "like dissolves like"

- water is polar and can form hydrogen bonds (H-bonds)

acetone

California State Polytechnic University, Pomona Organic Chemistry I, CHM 3140, Dr. Laurie S. Starkey

Hybridization of Carbon Atoms

sp³-hybridized

4 regions of electron density

- sp³ hybrid orbitals
- tetrahedral geometry
- 109.5° bond angles

sp²-hybridized

3 regions of electron density

- sp² hybrid orbitals
- one p orbital remains
- trigonal planar geometry
- 120° bond angles

sp-hybridized

2 regions of electron density

- sp hybrid orbitals
- two p orbitals remain
- linear geometry
- 180° bond angle

sp

3D Orientation of Sigma (σ) and Pi (π) Bonds

Tetrahedral orientation of sigma bonds in methane (*sp*³ hybridization).

Linear orientation of sigma bonds in acetylene (*sp* hybridization). Overlapping *p* orbitals form two pi bonds.

Trigonal planar orientation of sigma bonds in ethylene (sp^2 hybridization). A pi bond is formed by overlapping p orbitals that are orthogonal to sp^2 plane.

sp²

California State Polytechnic University, Pomona

Organic Chemistry I, CHM 3140, Dr. Laurie S. Starkey

Ch. 1 Summary (Klein 4th edition) Chemistry Review & Intro to Organic Molecules

- I. Review of General Chemistry concepts (1.1 1.8)
 - A) atomic structure; energy of atomic orbitals (s, p)
 - B) electronegativity ability of an atom to attract electron density
 - i) fluorine is most electronegative element (oxygen is second-most!), periodic trends
 - ii) $C \approx H$ electronegativity, N = Cl electronegativity
 - C) a filled valence shell (full octet) imparts stability
 - D) covalent vs. ionic bonds
 - E) bond polarity (δ + and δ –) *SkillBuilder 1.4*
- II. Reading Line Drawings (1.6) SkillBuilder 1.5
- III. Lewis Structures (1.3, 1.4) SkillBuilder 1.2
 - A) structures show σ , π and nonbonded electrons
 - B) formal charges (1.4) **SkillBuilder 1.3**
 - C) recognize "typical" configurations for common atoms (H, C, N, O, X)
- IV. Atomic Orbitals (AO's) combine to give Molecular Orbitals (MO's) (1.7 1.9)
 - A) Bonding MO's (σ, π) contain electrons in covalent bonds
 - B) Antibonding MO's (σ^*, π^*) are usually empty, can contain excited electrons
 - C) Relative energies, stabilities of MO's
- V. Hybrid Orbitals (1.10) and Shape/Geometry (1.11) SkillBuilders 1.7, 1.8
 - A) sp^3 hybridization: 4 regions of electron density, tetrahedral geometry
 - B) sp^2 hybridization: 3 regions of electron density, trigonal planar geometry, contains an unhybridized p orbital
 - C) *sp* hybridization: 2 regions of electron density, linear geometry, contains two unhybridized *p* orbitals
- VI. 3-D sketches (2.6)
 - A) determine hybridization to learn geometry about each atom
 - B) draw aligned p orbitals to show π bonds
- VII. Molecular Polarity (1.12) & Physical Properties (1.13, 1.14) SkillBuilders 1.9, 1.10
 - A) Nonbonding (intermolecular) Interactions affect bp, mp
 - i) dipole-dipole for polar molecules (δ +, δ -)
 - ii) hydrogen bonding for molecules containing NH, OH or HF (STRONG dipole)
 - iii) van der Waals (London dispersion) temporary dipole moments
 - a) explains why bp varies by MW (higher MW, higher bp)
 - b) straight vs. branched molecules (greater surface area, higher bp)
 - B) mp increases for molecules that can pack tighter (more spherical, higher mp)
 - C) water solubility increases with polarity, hydrogen-bonding ability
- VIII. Isomerism (1.2) SkillBuilder 1.1
 - A) structural (constitutional): same molecular formula, different connectivity
 - B) cis-trans (stereoisomers): structures vary only by orientation in space

Hybridization

