California State Polytechnic University, Pomona

CHM 3140 Organic Chemistry I, Dr. Laurie S. Starkey

Chapter 15 Summary (Klein 4th ed. textbook): NMR Spectroscopy

- I. Introduction to NMR Spectroscopy (15.1-15.3)
 - A) Analysis of molecular structure
 - B) Radiowave energy causes nuclear spin to flip
 - C) ¹H and ¹³C nuclei can be observed
- II. Number of NMR Signals (15.4) SkillBuilders 5.1, 5.2
 - A) Indicate the number of unique types of protons (or carbon atoms)
 - B) Determine relationship of protons by using "swap test" (replace with Cl atom)
 - i) Homotopic protons are equivalent in NMR
 - ii) Enantiotopic protons are equivalent in NMR
 - iii) Diastereotopic protons are NOT equivalent in NMR
- III. Peak Integration (5.6) SkillBuilder 5.4
 - A) Indicates the number of protons giving rise to a signal
 - B) Values given as #H (1H, 2H, 3H, etc.), or integral trails or values beneath each peak
- IV. Chemical Shift (δ value) (15.5) **SkillBuilder 15.3**
 - A) Values given in ppm
 - B) Chemical shift tables are provided, and can also be calculated
 - C) Higher ppm (downfield) indicates more electron-rich environment
 - i) Tetramethylsilane (TMS) is a common reference at 0 ppm
 - D) Lower ppm (upfield) indicates more electron-deficient environment
 - i) Electronegative groups cause downfield shift (e.g. MeO ~3.8 ppm)
 - ii) Pi bonds cause downfield shift (e.g. aromatic ~7 ppm, alkenyl ~5 ppm)
 - E) Protons on oxygen or nitrogen have variable δ values (typically broad singlets)
- V. Shape of Signal: Multiplicity/Splitting Patterns (15.7) SkillBuilder 15.5
 - A) Indicates the number of nonequivalent *neighboring* protons
 - B) n+1 Rule = n neighboring protons results in n+1 peaks
 - i) no neighboring protons \rightarrow singlet (s)
 - ii) 1 proton neighbor → doublet (d)
 - iii) 2 proton neighbors \rightarrow triplet (t)
 - iv) 3 proton neighbors \rightarrow quartet (q), and so on...
- VI. Putting it all together
 - A) Predicting a ¹H "Proton" NMR Spectrum (15.8) SkillBuilder 15.6
- B) Using ¹H NMR data to distinguish between compounds (15.9) **SkillBuilder 15.7**
- VII. ¹³C NMR Spectroscopy (15.11, 15.12) **SkillBuilder 15.9**

	Stop	Here	for	Exam	II	
--	------	------	-----	------	----	--

VIII. Interpreting a ¹H NMR Spectrum (15.10) **SkillBuilder 15.8**