Dr. Laurie S. Starkey, CHM 3140 Organic Chemistry I, Cal Poly Pomona Chapter 10 Radical Reactions – <u>Practice Problems</u>

Many of these problems are from the Ch. 10 skeleton notes (page).

Predict the major product for each of the following reactions (assume monohalogenation p.10-3

$$CH_3CH_3$$
 Br_2 CI_2 h_V

Group work: provide a mechanism for the monobromination of ethane.

Begin with an initiation step, and then use propagation steps until the product is formed.

Consider: why does the chlorine radical abstract a H atom not a C group? Estimate ΔH for competing propagation steps... bond broken bond formed

Br.
$$+$$
 H—CH₂CH₃ \longrightarrow H-Br $+$ •CH₂CH₃

Thermodynamic considerations (strengths of bonds formed and bonds broken) also explain why reaction with F_2 and I_2 are not useful. Fluorination releases too much energy (explosive) and iodination forms very weak bonds so it is endothermic and unfavorable.

Therefore, free-radical halogenation always replaces a H atom with a Cl or Br atom

** Bromination occurs at most substituted carbon, chlorination forms all possible products**

Consider: why is bromination more selective than chlorination?

p.10-4

See ΔH for the H atom abstraction step for both... bond brok

bond broken bond formed

Br.
$$+$$
 H—CH₂CH₃ \longrightarrow H-Br $+$ ·CH₂CH₃

$$CI \cdot + H - CH_2CH_3 \longrightarrow H-CI + \cdot CH_2CH_3$$

**The first propagation step for bromination is *endothermic* so it is slow and the transition states leading to the different intermediates (1°/2°/3°) are significantly different (primary is over 1600 times slower than tertiary).

**For chlorination, this step is exothermic so it is fast and does not discriminate about which hydrogen is abstracted. The transition states for chlorination at 1°/2°/3° sites are not significantly different, so the reaction rates are similar (primary is one-fourth the rate of teriary).

In the compound shown below, which hydrogen is most easily abstracted in a free radical bromination reaction?

Predict the major product of the following reaction.

$$\begin{array}{c} \mathsf{CH}_3\\ \mathsf{CH}_3-\!\mathsf{CH}-\!\!\!\!\!=\!\!\mathsf{CH}-\!\!\!\!-\!\!\mathsf{CH}-\!\!\!\!-\!\!\mathsf{CH}_3\\ \mathsf{A}\quad\mathsf{B}\quad\mathsf{C}\quad\mathsf{D}\quad\mathsf{E} \end{array}$$

$$\frac{Br_2}{h\nu}$$

Predict the major product(s) for each reaction. Consider both regiochemistry and stereochemistry. p.10-4

predict the major product(s) p.10-5

Predict the major products for the following reactions.

Predict the major product and briefly explain.