Organic Chemistry CHM 3140 Dr. Laurie S. Starkey, Cal Poly Pomona Radical Reactions & Mechanisms - Chapter 10 (Klein)

- I) Introduction to Free Radicals (10.1)
- II) Radical Mechanisms (10.2)
- III) Free-Radical Halogenation (10.3-10.7)
 - A) Mechanism
 - B) Regiochemistry (10.5)
 - C) Allylic Halogenation (10.7)

- chlorine atom

carbon radical

general radical

R٠

- IV) Radical Additions to Alkenes (10.10)
- V) "Real-World" Radicals (10.8,9,11,12)
- VI) Synthetic Strategies (10.13)

I. Introduction to Free Radicals (10.1)

- radicals have an unpaired electron (reactive intermediates)
- radical geometry is essentially planar (sp^2 or rapidly inverting pyramidal)
- radicals are electron rich / deficient

Radical stability

- alkyl groups are polarizable (their electron density can be drawn toward missing octet)
- alkyl groups are inductively electron withdrawing / donating (called hyperconjugation)
- this is a stabilizing feature for the radical
- if INCREASE # of alkyl substituents, then stability

Overall radical stability: benzylic, allylic 3°

II. Radical Mechanisms (10.2)

regular arrow

moves 2 electrons

fish-hook arrow moves 1 electron

10.1 & 10.3

Common mechanisms:

10-2

CH₄ + Cl₂
$$\xrightarrow{\text{light (hv)}}$$
 CH₃Cl + HCl heat (\triangle)

this is an important reaction to <u>functionalize</u> alkanes (add a FG)

A) Mechanism: a chain reaction (after initiation, there are two main steps* to form product)

Initiation (creates a radical)

*Propagation steps (one radical creates a new radical)

Also possible (but infrequent): **Termination steps** (destroys radicals)

- when any two radicals collide R⋅ ⋅R →

this is a rare event...consider thermodynamics vs. kinetics

present in small accounts for a negligible concentration amount of product!

other byproducts possible

- when a radical reacts with an "inhibitor"

inhibitor +
$$R \cdot \longrightarrow$$
 inhibitor- $R \cdot \cap A \rightarrow$ inhibitor + $R \cdot \cap A \rightarrow$ inhibitor +

example: O2 gas is a diradical, so radical reactions require an oxygen-free atmosphere

example: BHT (butylated hydroxytoluene) is a radical inihibitor because the chain reaction is stopped when a stable and hindered radical is formed.

Show the reaction of a radical with BHT (a hydrogen atom abstraction takes place). Use drawings to show why the product is so stable. You can use the abbreviation t-Bu in your drawings.

$$CH_3CH_3$$
 $\xrightarrow{Br_2}$

$$Cl_2$$

Group work: provide a mechanism for the monochlorination of cyclopentane. Begin with an initiation step, and then use propagation steps until the product is formed.

Consider: why does the chlorine radical abstract a H atom not a C group? Estimate ΔH for competing propagation steps... bond broken bond formed

$$Br \cdot + H - CH_2CH_3 \longrightarrow H-Br + \cdot CH_2CH_3$$

Thermodynamic considerations (strengths of bonds formed and bonds broken) also explain why reaction with F_2 and I_2 are not useful. Fluorination releases too much energy (explosive) and iodination forms very weak bonds so it is endothermic and unfavorable.

Therefore, free-radical halogenation always replaces a H atom with a Cl or Br atom

B) Regiochemistry of Free-Radical Halogenation (10.5)

Which site/region undergoes a reaction?

$$CH_3$$
 CH_3
 CH_3

** Bromination is very selective**

Site of reaction 1° 2° 3° Relative rate

- tertiary H atom is easier to remove
- tertiary radical is more stable than primary radical
- tertiary C-H bond is weaker (costs less energy to break)
- tertiary is *faster* reaction (lower E intermediate/TS)

 3°

** Bromination occurs at most substituted carbon, chlorination forms all possible products**

Consider: why is bromination more selective than chlorination? See ΔH for the H atom abstraction step for both...

bond broken bond formed

$$Br \cdot + H - CH_2CH_3 \longrightarrow H-Br + \cdot CH_2CH_3$$

$$CI \cdot + H - CH_2CH_3 \longrightarrow H-CI + \cdot CH_2CH_3$$

Predict the major product(s) for each reaction. Consider both regiochemistry and stereochemistry.

$$\frac{Br_2}{h\nu}$$

$$Cl_2$$

^{**}The first propagation step for bromination is *endothermic* so it is slow and the transition states leading to the different intermediates (1°/2°/3°) are significantly different (primary is over 1600 times slower than tertiary).

^{**}For chlorination, this step is *exothermic* so it is fast and does not discriminate about which hydrogen is abstracted. The transition states for chlorination at 1°/2°/3° sites are not significantly different, so the reaction rates are similar (primary is one-fourth the rate of teriary).

Predict the major product:

Avoid using Br₂ with an alternate source of Br ·

predict the major product(s):

try SkillBuilder 10.7

IV. Radical Additions to Alkenes (10.10)

HBr H Markovnikov addition of HBr

Mechanism:

Mechanism:

A. Polymerizations

B. Ozone degradation

$$F \xrightarrow{Cl} Cl \longrightarrow F \xrightarrow{Cl} + Cl \xrightarrow{O_3} O \xrightarrow{Cl} + O_2$$

$$Cl \qquad chlorine \\ freon \\ chlorofluorocarbon \\ (CFC)$$

C. Autooxidation

(reaction with O₂)

$$\bigcirc O_2 \qquad \bigcirc OOH$$

an ether (tetrahydrofuran, THF)

peroxide (danger!)

- ethers (used as solvents) can become explosive if stored too long
- reaction is catalyzed by light so reagents are usually stored in dark bottles
- autooxidation also causes deterioration of food (rancid oil)
- preservatives (BHT, BHA) react with radicals and inhibit autooxidation

D. Antioxidants (prevent autooxidation)

sunlight exposure → free radicals → skin damage (cancer, wrinkles)

Antioxidants (vitamins E, K, C, β -carotene, preservatives!) behave as **radical** scavengers and consume free radicals. Anti-aging miracles? Doubtful...

VI. Synthetic Strategies (10.13) Transform the given starting material to desired TM.