1)

Organic Chemistry CHM 3140 Dr. Laurie S. Starkey, Cal Poly Pomona Study of Chemical Reactions & Mechanisms - Chapter 6 (Klein)

- I) Thermodynamics (6.1, 6.2, 6.3, 6.4) (K_{eq} , ΔG , ΔH , ΔS)
 - A) E vs. POR diagrams (6.6)
 - B) Estimating ΔH using bond dissociation energies
- II) Kinetics and reaction rate variables (6.5)
- III) Two-step mechanisms and intermediates (6.6)
 - A) carbocation stability (6.8)
 - B) carbocation rearrangements (6.11)
- IV) Mechanisms and arrow-pushing patterns (6.8, 6.9, 6.10)

Read on your own:

6.12 Reversible & Irreversible Arrows

Moved to Ch. 7:

6.7 Nucleophiles & Electrophiles (& SkillBuilder 6.2)

I. Thermodynamics (6.1 - 6.4)

- compare Energy (stability) of reactants or starting materials (SM) and products
- predict direction of equilibrium (e.g., forward or reverse)

Equilibrium constant (6.4)

$$K_{eq} = \frac{[products]}{[reactants]}$$

If
$$K_{eq} > 1$$
, then forward / reverse reaction is favored
If $K_{eq} < 1$, then forward / reverse reaction is favored

$$\Delta G = -RT \ln K_{eq}$$

$$\Delta G = \Delta H - T \Delta S$$

 ΔG = Gibbs free energy (is reaction spontaneous?) (6.3)

 ΔH = change in enthalpy (strength of bonds formed and broken) (6.1)

 ΔS = change in entropy (usually small for organic reactions) (6.2)

FYI Δ S > 0 if one reactant molecule generates two product molecules

A) Energy vs. Progress of Reaction Diagrams (6.6)

Favorable 1-Step Reaction

Unfavorable 1-Step Reaction

Products are lower Energy, more stable. Products are favored (K_{eq} 1)

Energy is ________
ΔH 0 (_______)
ΔG 0 ()

Reactants/Starting materials (SM) are lower Energy, more stable. SM are favored (K_{eq}

Energy is _____

ΔG 0 (

forward / reverse reaction is spontaneous

forward / reverse reaction is spontaneous

B) Estimating Δ using bond dissociation energies (6.1)

Bond breaking - releases / consumes energy (ΔH 0, _____THERMIC

Bond formation - releases / consumes energy (ΔH 0, _____THERMIC

Use bond dissociation energy (BDE) to estimate ΔH_{rxn}

<u>Homolytic</u> cleavage of a covalent bond: $H - H \longrightarrow H^{\bullet} + H^{\bullet} = 104 \text{ kcal/mol}$

ΔH° for Single Bonds (kcal/mol)

	H	C	N	O	F	Cl	Br	I	Si
Н	104	99	93	111	135	103	87	71	76
C		83	73	86	116	81	68	52	72
N			39	53	65	46			
O				47	45	52	48	56	108
F					37				135
Cl						58			91
Br							46		74
I								36	56
Si									53

DH° for Multiple Bonds (kcal/mol)

3 ond strength/length as a function of hybridization:

CI H	H ₂ —CH ₃	$CH = CH_2$ H	С <u></u> СН Н
hybridization of carbon	sp^3	sp^2	sp
C-H bond length (Å)	1.10	1.08	1.06
C-H bond strength (kcal/mol)	98	108	125
% s character of C-H bond	25%	33%	50%

greater "s character" gives shorter, stronger bonds

Use bond dissociation energy (BDE) to estimate ΔH_{rxn}

Bonds broken: (kcal/mol) Bonds formed: (kcal/mol)

approximate $\Delta H =$

Group work: Estimate ΔH_{rxn} for the following reaction. Is it exothermic or endothermic?

see SkillBuilder 6.1

II) Kinetics (6.5) Consider the rate/speed of a given reaction: A + B --> C + D

rate = $k[A]^a[B]^b$ rate expression is determined experimentally (k = rate constant at a given temperature)

Example:

Observation in kinetic study:

if [HO⁻] is doubled, then rate doubles (reaction is twice as fast) if [CH₃Cl] is doubled, then the rate doubles

Rate expression:

The reaction is "first-order" with respect to each reactant (exponent = 1) The reaction is "second-order" overal (sum of exponents).

Group work: what happens to the rate of the above reaction of the amount of solvent is doubled?

- a) it is 4x faster
- b) it is twice as fast
- c) no rate change
- d) it is half the rate
- e) it is 1/4 the rate

Reaction rate variables: how can we speed up or slow down a reaction?

Note: to achieve transition state (TS), a collision is needed with sufficient Energy (>E_a)

- 1) increase temperature, increase rate
- 2) increase concentration, increase rate
- 3) lower Energy of Activation (E_a), increase rate

III) E vs. POR diagram for a 2-step mechanism (6.6)

Reactive Intermediates are high-energy species

- produced and then consumed in reaction (doesn't appear in net reaction: SM Product
- different from Transition State (intermediates have full bonds, full charges)
- examples include carbocations (6.8) and radicals (Chapter 10)

Rate-Determining Step: the reaction step with the highest E_a (highest TS energy) is slowest

A) Carbocations and carbocation stability (6.8)

6-5

consider a carbocation: hybridization?

$$R \stackrel{\bigoplus}{-C} - R$$
 geometry? what is in the p orbital?

Carbocations are electron-deficient so they will be stabilized by electron withdrawal / donation

- alkyl groups are polarizable (their electron density can be drawn toward + charge
- alkyl groups are inductively electron withdrawing / donating (called hyperconjugation*)
- this is a stabilizing feature for the positive charge
- if INCREASE # of alkyl substituents, then _____ stability

*Hyperconjugation in the *tert*-butyl carbocation (a tertiary carbocation) occurs with all 3 methyl groups.

This stabilizes the positive charge.

Carbocations can also be stabilized by resonance

allylic carbocation

benzylic carbocation

Overall carbocation stability:

B) Carbocation rearrangements (6.11)

It is possible for neighboring groups to "shift" over to the positively charged carbon, if the relocated positive charge ends up in a more favorable position.

Hydride shift:

Methyl shift:

$$\begin{array}{c} \mathsf{CH_3} \oplus \\ \mathsf{CH_3} - \mathsf{C} - \mathsf{CH} - \mathsf{CH_3} \\ \mathsf{I} \\ \mathsf{CH_3} \end{array} \qquad \begin{array}{c} \mathsf{CH_3} \\ \mathsf{CH_3} - \mathsf{C} - \mathsf{CH} - \mathsf{CH_3} \\ \oplus \\ \mathsf{CH_3} \end{array}$$

see SkillBuilder 6.6

IV) Mechanisms and arrow-pushing patterns (6.8, 6.9, 6.10)

In addition to **carbocation rearrangements**, the following patterns of arrow-pushing will also be encountered in mechanisms found throughout organic chemistry:

Proton Transfer (Ch. 3) Draw curved arrows to show the mechanism and draw the organic product:

Deprotonation of a substrate

Protonation of a substrate

Loss of a Leaving Group (Ch. 7) Provide the products that result from the following curved arrows:

Nucleophilic Attack (Ch. 7) Provide the product that results from the following curved arrow:

$$CH_3$$
 CH_3 CH_3 CH_3 CH_3 CH_3