Klein Chapter 4: Alkanes & Cycloalkanes

Chapter Outline

- 1) Nomenclature (alkanes & cycloalkanes: 4.1, 4.2, alky halides: 7.2)
- 2) Isomers (4.3), Molecular Formula, Degrees of Unsaturation/HDI (14.16)
- 3) Physical Properties, Source and Use of Alkanes (4.5)
- 4) Conformations (4.6, 4.7, 4.8)
- 5) Cycloalkanes (4.9, 4.14, 4.15)
 - A) Cyclohexane (4.10 to 4.13)

skip section 4.4 & SkillBuilder 4.5

1) Alkane Nomenclature (4.2)

Alkanes are **saturated hydrocarbons** (only carbon and hydrogen, and with the maximum number of hydrogens - so no pi bonds, only sigma/single bonds)

alkane formula: C_nH_{2n+2}

CH ₄	methane	CH ₄	C ₅ H	pentane	C ₈ H	octane
CH ₃ CH ₃	ethane	C_2H_6	C ₆ H	hexane	C ₉ H	nonane
CH ₃ CH ₂ CH ₃	propane	C ₃ H ₈	C ₇ H	heptane	C ₁₀ H	decane
CH ₃ (CH ₂) ₂ CH ₃	butane	C.H	line o	drawing for deca	ıne:	

cycloalkane formula: C_nH_{2n}

IUPAC Rules for naming alkanes

- 1. Find the longest carbon chain (if there is a tie, choose chain with the most substitutents). Name parent (one C = methane, two C's = ethane, three C's = propane, etc.).
- 2. Number the carbon chain, starting from the end closest to the first substituent.
- 3. Name and number the substituents (use di, tri, tetra, etc., prefixes for groups that appear more than once). Insert dashes between numbers and letters, and commas between numbers
- 4. Alphabetize* and list substituents before the parent name. *Ignore all prefixes other than iso.

$$-CH_3$$

methyl (Me)

ethyl (Et)

propyl (Pr)

cyclobutyl

$$-CH2(CH2)2CH3$$

butyl (Bu)

$$\mathsf{CH_2CH_2CH_3} \ | \ \mathsf{CH_3-CH-CH-CH-CH_3} \ | \ \mathsf{CH_3} \ | \ \mathsf{CH_3}$$

Other Substituents

(groups attached to parent)

fluoro

4-2

chloro

bromo

$$-1$$

iodo

Note: phenyl is described as an aryl (Ar-) group since benzene is described as an "aromatic" compound

Common names for alkyl groups

$$-CH_2CH_2CH_3$$
 n-propyl (*n*-Pr)

isopropyl (i-Pr)

 $-CH_2(CH_2)_2CH_3$ *n*-butyl (*n*-Bu)

 $\mathsf{CH_3CHCH_2CH_3}\ \mathit{sec}\text{-butyl}\ (\mathit{s}\text{-Bu})$

CH₃ CH₂CHCH₃ isobutyl (*i*-Bu)

$$CH_3$$

tert-butyl (t-Bu)

sec-butyl alcohol

n-propyl alcohol

see SkillBuilders 4.1, 4.2, 4.3, 4.4

				7
2	2) Molecular Formula and Degrees of Unsaturation (14.16) to Draw	1	/ A 9	٠,
_	Z) Molecular Formula and Degrees of Unsaturation (14.16) to Draw	isomers i	4.5	۱ د
_		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,	′,

"saturated" alkane formula: C_nH_{2n+2}

want to add a ring?

want to add a π bond?

every 2 missing H's = a degree/site of unsaturation (DU) (aka HDI, hydrogen deficiency index)

Determine the DU

 C_9H_{16} $C_6H_{11}OCI$

How is DU helpful? Draw isomers of C₅H₁₂

see SkillBuilder 4.6

3) Physical Properties (4.4, 4.5)

- nonpolar, hydrophobic
- isolated from petroleum/oil
- fairly unreactive (all strong σ bonds, no π bonds or lone pairs)
 - used a fuel
 - can undergo free-radical halogenation (R-H ightarrow R-Br, Klein Chapter 10)

 $CH_3CH_2CH_3$ $C_{31}H_{64}$ Overall trend: bp °C - 42 69 > 300

4) Conformations of Alkanes (4.6, 4.7)

conformers - structures that differ only by rotation about single/sigma (σ) bonds (conformers are different forms of the same molecule - they are interconvertible)

Ethane

rapidly interconverting conformers (~1,000,000 times/second!)

Newman Projection (view down a C-C bond)

eclipsed conformation is higher/lower in energy than staggered due to "torsional strain" (a resistance to twisting)

Newman Projection (view down C2-C3 bond)

steric hindrance (sterics)

- interaction between large/bulky groups
- causes instability

$$H$$
 H
 CH_3
 C

staggered

staggered H

$$A \longrightarrow \begin{matrix} CH_3 \\ H \\ H \\ CH_3 \end{matrix} \qquad \begin{matrix} H \\ CH_3 \\ CH_3 \end{matrix} \qquad \begin{matrix} H \\ H \\ CH_3 \end{matrix}$$

eclipsed

Group work: 1) Provide the IUPAC name of the compound below (it may help to redraw it).

- 2) Determine the **direction** of the equilibrium. Explain.
- 3) Draw the **lowest** and **highest energy** conformations of this compound.

$$CH_3$$
 H
 CH_2CH_3
 CH_3CH_2
 H
 CH_2CH_3
 CH_3CH_2
 CH_3CH_2
 CH_3CH_3

lowest Energy: highest Energy:

5) Structure and Conformations of Cycloalkanes (4.9)

 $\begin{array}{c} H \\ H \\ H \end{array}$

cyclopropane

- sp³ bond angle can't be 109.5°
- eclipsing H's

cyclobutane

** these small rings have a large amount of "ring strain" **

cyclopentane

- has very little ring strain

the envelope conformation

Cis-Trans Isomerism in Cycloalkanes (4.14)

cis means two groups are on the same side trans means two groups are on opposite sides

trans-1,3-dimethylcyclopentane *cis*-1,3-dimethyl-cyclopentane

A) Cyclohexane (4.10-4.14)

- has NO ring strain!
- six-membered rings are commonly found in nature
- YouTube tutorials http://bit.ly/1fzyjZp

Draw a cyclohexane chair:

chair conformation

 H_{ax} = axial position (straight up or down)

H_{eq} = equatorial position (slightly up or down)

boat conformation

Group work: Decalin is composed of two fused cyclohexane rings.

- 1) Draw all of the missing hydrogen atoms on the numbered decalin framework shown. (Start by adding the axial hydrogens.)
- 2) Identify whether each of the following substituents would be in an equatorial (eq.) or axial (ax.) position.
- 3) Is the numbered drawing cis- or trans-decalin? Explain.

cis-decalin trans-decalin

- a) A group at the C-3 position pointing UP. _____
- b) A group at the C-7 position pointing DOWN. _____
- c) A group at the C-2 position pointing UP. _____
- d) A group at the C-9 position pointing DOWN. _____
- e) A group at the C-10 position pointing DOWN. _____
- f) A group at the C-1 position pointing UP. _____

cis or trans decalin?

Draw and compare stabilities of the two chair conformations of methylcyclohexane (chair "flip"). 4-8

Group work: Draw the two chairs of *cis*-1-*t*-butyl-4-methylcyclohexane. Which is more stable?

Group	"a value" <u>∆G (ax-eq)</u>
–H	0
–CI	0.5
−CH ₃	1.7
-CH ₂ CH ₃	1.9
–t-Butyl	4.9
_c≡c⊦	0.2

Group work: Draw each of the following compounds and determine which one is the most thermodynamically stable.

A) *cis*-1,4-dimethylcyclohexane

B) *trans*-1,4-dimethylcyclohexane

C) 1,1-dimethylcyclohexane

D) cis-1,2-dimethylcyclohexane

E) trans-1,3-dimethylcyclohexane

Provide the IUPAC name for the given compound.

Provide a drawing for the following name: (1,1-dimethylethyl)cyclohexane

Provide the IUPAC name for the given compound.

CH₃CH₂C(CH₃)₂CHBrCH(CH₃)₂

Provide the IUPAC name for the given compound.

Which is the correct IUPAC name for **2-sec-butylpentane**? (draw and rename)

- I. Nomenclature (4.2, 7.2) SkillBuilders 4.1, 4.2, 4.3, 4.4
 - A) alkane names $C_1 C_{10}$ (methane decane)
 - B) IUPAC rules, naming complex substituents
 - C) common names (*n*-Pr, i-Pr, *n*-Bu, *s*-Bu, i-Bu, *t*-Bu)
 - D) identifying primary (1°), secondary (2°), tertiary (3°), and quaternary (4°) carbons
- II. Degrees of Unsaturation (DU) or Hydrogen Deficiency Index (HDI) (14.16)
 - A) C_nH_{2n+2} is the formula for a saturated hydrocarbon (alkane)
 - i) halogens (F, Cl, Br, I) count as a hydrogen; oxygens are ignored
 - B) every 2 "missing" hydrogens means 1 site/degree of unsaturation (1 DU)
 - C) each site of unsaturation can be a ring or a π bond
 - D) use DU to help draw isomers of a given formula SkillBuilder 4.6
- III. Sources, Uses and Physical Properties of Alkanes (4.5)
 - A) nonpolar, hydrophobic
 - B) used as fuels
 - C) boiling point (bp) increases with MW (larger surface area; more van der Waals)
- IV. Conformations of Alkanes (4.6 4.8) SkillBuilders 4.7, 4.8
 - A) staggered vs. eclipsed conformations
 - B) Newman Projections
 - C) Energy diagrams, relative stability of conformers (torsional strain, sterics)
- V. Cycloalkanes (4.9, 4.15)
 - A) ring strain in cyclopropane, cyclobutane (torsional + angle strain)
 - B) cis-trans isomerism in cycloalkanes (4.14)
 - C) conformations of cyclohexane (4.10 4.13) SkillBuilders 4.9, 4.10, 4.11, 4.12, 4.13
 - i) chair vs. boat
 - ii) axial and equatorial positions
 - iii) chair flips
 - iv) predicting stability of chairs for substituted cyclohexanes
 - a) axial positions have sterics called 1,3-diaxial interactions
 - b) larger groups prefer equatorial position

skip: section 4.4 and SB 4.5, and problems 11-13, 39, 44, add: Ch. 7: 7.17, 7.47, 7.48g; Ch. 14: 14.30 (all but c), 14.32, 14.48 (all but f and g).

Summary: \uparrow Molecular weight, \uparrow bp. Only if MW is same, **THEN** \uparrow branching, \downarrow bp