Chapter 2 Summary (Klein textbook) - Molecular Representations & Resonance

(Klein section numbers, **SB** = SkillBuillers, **CC** = Conceptual Checkpoints)

- I. Condensed formulas, bond-line drawings (2.1, 2.2, SB 2,1, 2.2)
 - A) 3D bond-line structures (2.6)
- II. Identifying lone pairs and formal charges (2.4, 2.5, SB 2.3, 2.4)
- III. Resonance (2.7-2.12)
 - A) moves π and nonbonded electrons in p orbitals to stabilize a molecule (2.7, 2.9, **SB 2.6**)
 - B) curved arrows show the redistribution of electron density (2.8, **SB 2.5**)
 - C) resonance forms can be ranked (find most important contributor, etc.) (2.11, SB 2.7)
 - D) drawing a resonance hybrid (2.12, **SB 2.8**)
 - E) identifying localized and delocalized lone pairs (2.13, **SB 2.9**)
 - a. sp^2 hybridization for atoms involved in resonance
 - F) three general types (i.e., things to look for) (2.10, **CC** 2.18-2.25):
 - a. Ione pair next to a π bond ("allylic" lone pair)
 - b. vacancy next to a π bond (allylic carbocation/empty p orbital)
 - c. bond between two different atoms (carbonyl-like)

IV. Introduction to Functional Groups (FG) (2.3)

A p orbital can be part of a pi bond, can contain an allylic lone pair, or can be empty.

$$H_2$$
C= CH_2

This sp^2 -hybridized **C** forms a π bond with an adjacent p orbital.

$$^{\oplus}$$
C(CH₃)₃ CH₃ $^{\oplus}$ CH₃

This sp^2 -hybridized **C** has an empty p orbital (carbocation).

$$H_2$$
c
 H_2
 H_2

All three carbon atoms are sp^2 -hybridized.

This sp^2 -hybridized **C** is involved in resonance. It contains a partial π bond and δ - charge.

The resonance hybrid:

$$\delta$$
- C δ - CH_2