Mass Spectrometry Discussion Questions For the given molecule (M=58), do you expect the more abundant peak to be m/z 15 or m/z 43? Explain. CH2CHCH3 Better! Primary carbocation But all CH2 is mon stable than methyl CO Explain. CH₃ CH₂ CH₂ CH₃ For the given molecule (M=74), which peak do you expect to be most abundant: m/z 31 m/z 45 or m/z 59? Explain. m) 59 / 1055 9 CHz THE = CH2 Explain why the mass spectra of methyl ketones typically have a peak at m/z 43. Provide the structure of this fragment. The acylin ron is remand stabilized (C2430) In the mass spectrum of the given molecule (M=88), provide structures for the peaks at m/z 45 and m/z 57. > CH3.CHCHCH3 W/2 57 (M-31) , W $CH_3-O \leftarrow CH_2 \leftarrow CH_2-CH_2-CH_3$ Hz Wz 45 (m-43) How could you use mass spectrometry to distinguish between the following two compounds (M=73)? Provide structures (and m/z values) for the significant fragments expected. CH₃-CH₂-CH₂+CH₂-NH₂ $CH_3 - CH_2 + CH_2 - NH - CH_3$ What would be the m/z ratio for the fragment resulting from a McLafferty Rearrangement for the following molecule (M=114)? What fragment accounts for its base peak at m/z 57?