Dr. Laurie S. Starkey, Cal Poly Pomona - NMR Spectroscopy: Spin-Spin Coupling

The magnitude of the coupling between two neighboring protons is determined by their spatial relationship. When considering the dihedral angle between hydrogen (as observed via a Newman projection), the maximum coupling constant (\mathcal{J}) occurs at 0° and 180° (eclipsed and anti protons, respectively), and is at a minimum when they are at 90° (orthogonal protons). Spin-spin coupling can occur through 2, 3 or even 4 bonds and can be generally classified as small ($<3 \mathrm{~Hz}$), medium $(\sim 7 \mathrm{~Hz}$) or large ($>10 \mathrm{~Hz}$). Not all protons are split by neighboring protons. Protons on N or O are acidic and are exchangeable. As a result, these signals usually do not couple with neighboring protons (OH and NH are typically broad singlets). Also, since protons on carbonyls have very small coupling constants, aldehyde H's typically appear as singlets.

a doublet with a small J

a triplet with a large J
$\left.\begin{array}{ll}\text { geminal (alkene) } & J_{\mathrm{ab}} \sim 1-2 \mathrm{~Hz} \\ \text { trans (alkene) } & J_{\mathrm{ac}} \sim 11-18 \mathrm{~Hz} \\ \text { cis (alkene) } & J_{\mathrm{bc}} \sim 6-15 \mathrm{~Hz}\end{array}\right\}$

General coupling constants (called " J values")
vicinal (3-bond)

$J_{\mathrm{ab}} \sim 7 \mathrm{~Hz}$
(freely rotating, so no fixed dihedral angle)

seminal (2-bond)

0° dihedral angle large coupling $J_{\mathrm{ab}} \sim 2-14 \mathrm{~Hz}$
note: only nonequivalent hydrogens will experience splitting, so this geminal coupling is for diastereotopic H's only (ie., those near a chiral center).

180° dihedral large coupling $J_{\mathrm{ab}} \sim 4-16 \mathrm{~Hz}$

90° dihedral small coupling $J_{\mathrm{ab}} \sim 0-2 \mathrm{~Hz}$
(for fixed dihedral angles - no free rotation)

note: gem coupling in an alkene ($\mathrm{sp}^{2} \mathrm{CH}_{2}$) is much smaller than for an alkane $\left(\mathrm{sp}^{3} \mathrm{CH}_{2}\right): \sim 1$ vs. $\sim 12 \mathrm{~Hz}$!
> longer-range coupling is also possible (very small)

ortho $\mathrm{J}_{\mathrm{ab}} \sim 7-10 \mathrm{~Hz}$ meta $J_{\mathrm{ac}} \sim 2-3 \mathrm{~Hz}$ para $J_{\text {ad }} \sim 0-1 \mathrm{~Hz}$
cyclohexane (ax-ax)
cyclohexane (ax-eq) or (eq-eq)
$J_{\mathrm{ab}} \sim 10-13 \mathrm{~Hz}$
(180° dihedral)
$\mathrm{J}_{\mathrm{ac}} \sim 2-5 \mathrm{~Hz}$ (60 ${ }^{\circ}$ dihedral)

consider H_{b} (may appear
as a triplet)
note: H_{b} (a doublet of doublets, dd) may appear as an apparent triplet if the large gem coupling $\left(J_{b c}\right)$ is about the same as the large ax-ax coupling ($J_{a b}$). ie., if J values are equal, then two neighbors result in a triplet ($n+1$ rule).
 consider $\mathrm{H}_{\mathrm{a}} \quad \mathrm{H}_{\mathrm{a}}$ (a doublet of doublets, dd)

a doublet of doublets, dd (four peaks but not a quartet - all equal heights/integration, and not even spacing between peaks)

