
8A) (12 pts) Provide the reagents necessary to transform the given starting material into the desired product. **If more than one synthetic step is needed, you must show the intermediate product(s) formed.** It may help to begin with a retrosynthesis, but you are not required to do so.

6B) (8 pts) Provide a structure that is consistent with the given 1H NMR spectrum. Show your work and justify your answer by labeling each set of protons on the structure a/b/c to match the a/b/c peaks in the spectrum, and confirming the δ value and splitting pattern for each set of protons. No work = no credit.

C ₉ H ₁₁ Br						С					e			
a 2H	b 2H								2	2H 			3H	
											d 2F	H		
8	7	Ī	6	J	5	-	4 PPM	,	3	L	2	1	,	(

¹ H NMR								
Protons on Carbon								
Type of C-H	δ (ppm)							
$R-CH_3$	0.9							
R-CH ₂ -R	1.3							
R_3C-H	1.5-2							
O CH ₃	1.8							
O R-C-CH ₃	2-2.3							
$Ar - CH_3$	2.3							
RC≣C-H	2.5							
R_2N-CH_3	2-3							
$R-CH_2-X$	3-3.5							
RO-CH ₃	3.8							
$R-CH_2-F$	4.5							
$R_2C = CR$	5-5.3							
Ar—H	7.3							
R-C-H	9.7							
Protons on Oxygen								
Type of H	δ (ppm)							
ROH	0.5-5							
ArOH	4-7							
0 R-C-OH	10-13							